搜索资源列表
FlexCRFs-0.3
- Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出,全名conditional random fields,该模型后来被广泛地应用在语言和图像处理领域,并随之出现了很多的变体。FlexCRF就是对CRF模型的一个实现应用工具,可用于文本信息处理
abner
- 一个命名实体识别工具,是Mallet开放源码项目的一部分,可用于识别文本中的人名、地名等信息-a named entity recognition tools, Mallet OSS part of the project, Text can be used to identify the names, places and other information
FreeICTCLAS
- 中科院的汉语词法分析系统ICTCLAS,主要功能包括中文分词;词性标注;命名实体识别;新词识别;同时支持用户词典。
ICTCLAS2009.对中文进行分词并对其词性标注
- 对中文进行分词并对其词性标注;命名实体识别;新词识别;同时支持用户词典,To be conducted in Chinese word segmentation and POS tagging Named Entity Recognition new word identification simultaneously support the user dictionary
windowsC32.rar
- 汉语词法分词系统,主要功能包括中文分词;词性标注;命名实体识别;新词识别;同时支持用户词典。,Morphology of Chinese word segmentation systems, the main features include Chinese word segmentation-of-speech tagging named entity recognition new word identification At the same time support the use
ICTCLAS50_Windows_64_C
- 中文词法分析是中文信息处理的基础与关键。中国科学院计算技术研究所在多年研究工作积累的基础上,研制了汉语词法分析系统ICTCLAS(Institute of Computing Technology,Chinese Lexical Analysis System),主要功能包括中文分词;词性标注;命名实体识别;新词识别;同时支持用户词典;支持繁体中文;支持gb2312、GBK、UTF8等多种编码格式。 ICTCLAS分词速度单机500KB/s,分词精度98.45 ,API不超过100kb,各种词典
stanford-ner-2007-11-05
- 斯坦福大学开发的命名实体识别源码,支持英文-Stanford NER- September 2006 ---------------------------------------------- This package provides a high-performance machine learning based named entity recognition system, including facilities to train models from su
mingmingshitishibie
- 这是一个关于命名实体识别的程序,可以识别人名,地名以及机构名称等-This is a study on Named Entity Recognition procedure to identify place names and the names of organizations, such as
lingpipe-3.6.0
- 一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能,包括主题分类(Top Classification)、命名实体识别(Named Entity Recognition)、词性标注(Part-of Speech Tagging)、句题检测(Sentence Detection)、查询拼写检查(Query Spell Checking)、兴趣短语检测(Interseting Phrase Detection)、聚类(Clustering)、字符语言建模(Character
CHMM
- 使用层叠隐马模型解决命名实体识别问题,含有训练语料及测试预料。-Implicit use of cascading Ma Named Entity Recognition Model to solve the problem, containing training materials and tests are expected words.
RESEARCH_ON_KEY_TECHNOLOGIES_OF_THE_INFORMATION_EX
- 说明:主要集中在命名实体识别和实体关系抽取两个方面,将先进的机器学习算 法和全新的理论方法一全信息理论运用到我们的整个研究过程中。-Descr iption: The main focus on named entity recognition and entity extraction between the two aspects of advanced machine learning algorithms and new theoretical methods of informat
ChineseNER-master
- Pyhton实现biLSTM+CRF算法,应用于中文命名实体识别(Pyhton implementation of biLSTM+CRF algorithm, applied to Chinese named entity recognition)
命名实体
- 关于国内外命名实体的研究,主要采用机器学习方法。(The research of named entity at home and abroad mainly adopts machine learning method.)
基于维基百科的命名实体消歧的研究与实现_杨雪
- 命名实体消歧涉及到很多的关键技术,包括特征提取、排序、聚 类等。(With the development of information technology, large unstructured data was generated on the network. How to get useful information from these large data, become the problem needed to solve in the NLP field.
NER-Deep-Learning-master
- 利用LSTM和条件随机场进行命名实体识别(Named entity recognition with LSTM and CRF)
【精品】中文命名实体标注规范
- 中文命名实体标注规范。 命名实体(named entity)所谓的命名实体就是人名、机构名、地名以及其他所有以名称为标识的实体。更广泛的实体还包括数字、日期、货币、地址等等。(NER. The named entity called named entity is the name of the person, the name of the organization, the place name, and all the other entities identified by the
Chinese-Literature-NER-RE-Dataset-master
- #中文命名实体识别,针对中文文档的命名实体识别(# Chinese-Literature-NER-RE-Dataset A Discourse-Level Named Entity Recognition and Relation Extraction Dataset for Chinese Literature Text)
ChineseNER-master
- BiLSTM+CNN结构实现中文命名实体识别(implement Chinese NER with BiLSTM+CNN architecture)
NER-CRF-HMM-master
- HMM以及CRF用于自然语音处理中的命名识别(HMM and CRF for name recognition in natural speech processing)
ResumeNER
- 命名实体识别预料 resume,开箱即用,方便快捷(Named entity recognition is expected to resume, out of the box, convenient and fast)