搜索资源列表
龙格库塔求解微分方程数值解
- 工程中很多的地方用到龙格库塔求解微分方程的数值解, 龙格库塔是很重要的一种方法,尤其是四阶的,精确度相当的高。
四阶龙格库塔法解一阶二元微分方程
- 四阶龙格库塔法解一阶二元微分方程 //dxi/dt=c*(xi-xi^3/3+yi)+K*(X-xi)+c*zi //dyi/dt=(xi-b*yi+a)/c //i=1,2,3 //X=sum(xi)/N
利用四阶龙格-库塔公式计算常微分初值问题的数值解
- 利用四阶龙格-库塔公式计算常微分初值问题的数值解,The use of fourth-order Runge- Kutta ordinary differential formula of the numerical solution of initial value problem
longgeceshi 四阶龙格库塔法解微分方程组实例
- 四阶龙格库塔法解微分方程组实例,没有调用函数,而是在基本含义基础上进行编译,有助于对龙格库塔法的理解。-Fourth-order Runge-Kutta method for solving differential equations instance, did not call the function, but on the basis of the basic meaning of compiler, contribute to the understanding of Runge-Ku
MyRunge_Kutta
- 实现四阶龙格库塔算法,求解非线性方程或是非线性方程组。-To achieve fourth-order Runge-Kutta algorithm for solving nonlinear equations or nonlinear equations.
FourthorderRungeKutta
- 四阶龙格库塔法的C实现 四阶龙格库塔法的C实现 -Fourth-order Runge-Kutta
用四阶龙格库塔法求解
- 用四阶龙格库塔法求解一阶微分方程组的通用程序,C++编写-Fourth-order Runge-Kutta method for solving a common procedure order differential equations, C++ writing
sijielongge
- 数值计算中的四阶龙格—库塔计算方法及流程图-Numerical calculation of fourth-order Runge- Kutta calculation method and flow chart
MyRK4sys
- 四阶龙格库塔法解常微分方程组 四阶龙格库塔法解常微分方程组-4-Runge-Kutta
2007511145848565_136Z_Com
- 四阶龙格库塔法求解微分方程,Visual C++ 环境下编译-4RK typical numerical analysis procedures, with four bands Runge- Kutta method to solve initial value problems
vsrk4
- 龙格-库塔(Runge-Kutta)法是一种不同的处理,作为多级方法为人们所知。 它要求对于一个简单的校正计算多个 f 的值。 这里是变步长四阶龙格库塔法的c程序-Runge- Kutta [Runge-Kutta] method is a different treatment, as a multi-stage method for people to know. It requires a simple correction for the calculation of
naviga090205
- 前人用四阶龙格库塔方法进行微分方程解算,用matlab编写的源代码,主要用于四元素微分方程的实时解算,上传-Using fourth-order Runge-Kutta methods for differential equation solvers, prepared to use matlab source code, mainly for the four elements of real-time differential equation solver
four-stepRunge-Kuttastatutoryfour-stepRunge-Kuttam
- 解微分方程(组)的定步长四阶龙格库塔法算法源代码-Solution of differential equations (Group) of fixed step size fourth-order Runge-Kutta method algorithm source code
Fourth-orderRungeKutta-rule
- 四阶龙格-库塔法则求解微分方程,四阶龙格-库塔法则求解微分方程-Fourth-order Runge- Kutta rule for solving differential equations, fourth-order Runge- Kutta rule for solving differential equations
runge-kutta
- 常微分方程的数值解法及仿真 一、 欧拉(Euler)公式 2 二、 龙格-库塔公式 2 1. 二阶龙格-库塔公式 2 2. 四阶龙格-库塔公式 2 三、 一阶常微分方程组的数值解法 2 四、 仿真算例 4 仿真1 应用欧拉法 4 仿真2 应用二阶龙格-库塔法 5 仿真3 应用四阶龙格-库塔法 6 附录 Matlab程序 7 1. 欧拉法程序 7 2. 二阶龙格-库塔法程序 8 3. 四阶龙格-库塔法程序 9 参考文献 10 -runge
GRKT10
- 最常用的四阶龙格—库塔法求解一阶常微分方程的C语言实现方法-The most commonly used fourth-order Runge- Kutta method for solving a first-order ordinary differential equations of the C language implementation method
四阶龙格库塔法程序——_FORTRAN语言编写
- 关于Runge-Kutta方法,该方法是用来解形如y'=f(t,y)的常微分方程的经典的4阶R-K方法,用fortran语言编写(With respect to the Runge-Kutta method, the method is used to solve the classical 4 order R-K method of ordinary differential equations such as y'=f (T, y), and is written in FORTRAN la
洛伦兹-龙格库塔
- 用四阶龙格库塔计算洛伦兹方程,人后运用Grapher绘制出洛伦兹方程的相图(Using the four order Runge Kutta to calculate Lorenz equation)
四阶龙格库塔法解数值微分
- 程序主要实现了四阶龙哥库塔,程序注释很详细(The fourth-order Longkouta is mainly realized, and the program annotations are very detailed.)
四阶龙格-库塔法
- 利用四阶龙格库塔求解微分方程,并给出方程实例。(The fourth order Runge Kutta is used to solve the differential equation and an example is given.)