搜索资源列表
907求多元线形回归方程及预报
- 907求多元线形回归方程及预报 一.功能 x1,x2, x3,………..xp为自变量,Y为随机变量, 求线形回归方程 Y= + +…+ + 其中 。。。, 为常数, 是随机变量,且 —N(0, ) 来描述Y与X的变化规律。并用T检验法检验线形回归是否显著。 如果线性回归显著,可用经验回归平面方程对Y作出预报,并给出预报值的置信区间。 -907 for multiple linear regression equation and a prediction. Fun
906求一元线形回归方程及预报
- 906 求一元线形回归方程及预报 一 功能 x为自变量,y为随机变量,给出一组n次观测值(Xi, Yi), I=1, 2, … n, 求线形回归方程 Y=A+BX 来描述Y与X的变化规律。并用T检验法检验线形回归是否显著。若显著,可用求得的线形回归方程作预报,并给出预报值的置信区间。 -906 for one yuan linear regression equation and forecast a function of the variable x, y as ran
逐步回归
- 程序采用可视化界面,对概率统计中的逐步回顾算法,用户可以在界面上输入变量个数,试验次数,对各种情况均可计算,最后输出回归方程。还可以从文件中载入数据,保存数据。-procedures used visualization interface to statistical probability of gradually recalled algorithm, users can interface the number of input variables, the number of all
统计回归3.00版
- 统计回归软件3.00版, 应用本程序,可以方便快速的建立多元一次回归方程,如气象上统计预报方程的建立等。-statistical regression software version 3.00, the application procedures, to facilitate the rapid establishment of a multiple regression equation, such as meteorological forecasting equation statis
shuxuejianmo_5.rar
- (回归分析) 考察温度x对产量y的影响,测得下列10组数据: 求y关于x的线性回归方程,检验回归效果是否显著,并预测x=42℃时产量的估值及预测区间(置信度95 ) ,(Regression analysis) x on the output of the temperature study of the impact of y, measured the following 10 sets of data: for y on x of the linear regression
backstep
- 实现多元线性回归方程自变量的选择及系数的求解,获得显著性拟合方程-The realization of multiple linear regression equations to solve significant
matlabtext2
- 考察温度x对产量y的影响,测得下列10组数据:求y关于x的线性回归方程,检验回归效果是否显著,并预测x=42℃时产量的估值及预测区间(置信度95 ) 示例包含在内-X on the output of the temperature study of the impact of y, measured the following 10 sets of data: for y on x of the linear regression equation to test whether the
exer5
- 回归分析 考察温度x对产量y的影响 测得下列10组数据 求y关于x的线性回归方程 检验回归效果是否显著 并预测x=42℃时产量的估值及预测区间-Regression analysis, study the temperature on the yield y of x measured by the following 10 sets of data demand y on x, the linear regression equation of the regression effect is
Timeseriers
- 对加拿大山猫捕获数量进行时间序列分析,建立自回归方程,并对未来的捕获数量进行了预测-To capture the number of Canadian lynx time-series analysis, since the regression equation, and the future was predicted to capture the number of
WindowsApplicationHangshu
- 这是用C#写的有关实现多维回归方程的程序,是多元一次的回归方程,如果是多次多元也可以转化为多元一次这一类来实现~-It is written in C# for the realization of multi-dimensional regression equation procedure is a multiple regression equation, if it is repeated multiple can be turned into this kind of first to
21
- 用C语言编写多元线性回归方程,写得不好的地方请指教!-Using C language multiple linear regression equation, where poorly written, please advice!
ZPHG.RAR
- 一个由VB6.0编写的逐步回归源程序,可解多元线性回归方程。-Prepared by a stepwise regression VB6.0 source code, multiple linear regression equation solvable.
Linear-regression-equation
- 一元线性回归方程, 求线性回归方程:Y = a + bx 的回归系数a和b. 用的是最小二乘法推导的结果。网上搜索最小二乘法原理,配合这个源代码学习还是不错的。本代码是网上搜来的,发现自学用不错,特上传分享。-Linear regression equation, find the linear regression equation: Y = a+ bx the regression coefficients a and b. derived using a least squares res
xianxinhuiguifangchengniheyuguji
- 线性回归方程拟合与估计 求误差方差的无偏估计 检验回归效果是否显著(Linear regression equation fitting and estimation)
拟合
- 输入N个点的横纵坐标,用一条直线拟合,用类的方法求出最能表现这N个点所在的那条直线的方程。(Enter the horizontal and vertical coordinates of N points, use a straight line fitting, and use the class method to find the equation that can best represent the line in which the N points are located.)
stepwise
- 逐步回归的基本思想是将变量逐个引入模型,每引入一个解释变量后都要进行F检验,并对已经选入的解释变量逐个进行t检验,当原来引入的解释变量由于后面解释变量的引入变得不再显著时,则将其删除。以确保每次引入新的变量之前回归方程中只包含显著性变量。这是一个反复的过程,直到既没有显著的解释变量选入回归方程,也没有不显著的解释变量从回归方程中剔除为止。以保证最后所得到的解释变量集是最优的。(In statistics, stepwise regression is a method of fitting re
第十章
- 数学建模第十章线性回归方程,简单易懂,适合数学建模学生(Mathematical modeling, the tenth chapter, linear regression equation)
逐步回归
- matlab简易逐步回归,内含2、3、4、5、6、8、10个因子回归时代码,对多因子进行排列组合,按照因子数进行回归,寻找最佳因子个数的回归方程。(Matlab simple step by step regression, containing 2, 3, 4, 5, 6, 8, 10 factors regression code, arranged on the multi-factor combination, regression in accordance with the numb
PCA equation
- 主成分分析法求得主成分回归方程,从而达到降维目的。(Principal component analysis method for obtaining the regression equation of principal components)
best_linear_regression_equation
- 病人有四个指标:X1:凝血值;X2:预后指数(与年龄相关);X3:酶化验值;X4肝功能化验值。54位肝病人术前数据与术后生存时间如表所示.病人生存时间的Box-Cox变换变量Z与X1,X2,X3,X4的线性回归模型是合理的,程序实现了如何选择最优回归方程。(Patients have four indexes: X1: coagulation value; x2: prognosis index (related to age); X3: enzyme test value; X4 liver