搜索资源列表
pca-svm
- 本程序用于对训练样本提取独立主元,作为样本特征,并送入SVM分类器中训练图像的预处理中不取对数,也无须做幅度归一,由ICA的应用条件决定的。预处理后的图像以向量的形式按行排列
matlab_image.matlab图像预处理
- matlab图像预处理,包括灰度化,对数变换,直方图均衡化,线性平滑滤波,中值滤波,自适应滤波,图像锐化,图像二值化,各类边缘检测算子等等,matlab image preprocessing, including gray-scale and logarithmic transformation, histogram equalization, linear filtering, median filtering, adaptive filtering, image sharpening, i
svmfinlib
- SVMfinlib源代码,包括图像预处理等等,很好用噢-SVM fin lib source code, including image pre-processing and so on, with Oh well
m-
- 用小波变换进行图像预处理,再用自编小程序寻优参数,并用svm分类-Using wavelet transform for image preprocessing, and then writing small programs optimization parameters, and SVM classification
Seal-Identification
- 运用H15;I色彩窄间对印章图像颜色特征提取等一系列预处理,研究了多种识 别方法后发现基于纹理特征的印鉴识别方法不但速度快,而且识别率也较高,并且方法简便。通 过将极坐标和傅垦叶变换结合,计算m印签图像纹理的频谱度量,来完成印鉴的特征提取,运用支 持向量机分类器对印鉴进行识别,实验证明,方法具有良好的旋转不变纹理分析性能,提高了识别 率。-It WaS found a fast,simple and a higher seal image(HSI)identification
Tppcca-svmh
- 本程序源码用于对训练样本提取独立主元,作为样本特征,并送入SVM分类器中训练图像的预处理中不取对对数,也无须做幅度归一,由ICA的应用条件决定的。预处理后的图像以向量的形式按行排列 可直接使用。 -The program source for independent main training samples extracted as sample characteristics, and fed into the SVM classifier training image preproce
WorkpieceRec_Hu
- work-piecehu.rar基本功能:图像预处理,去除阴影,之后利用hu矩,SVM分类。 -The basic function of the work-piecehu.rar: image preprocessing, shadow removal, followed by Hu moment, SVM classification.
SvmMNIST
- 通过SVM算法识别MNIST手写数字库,并加入了一些预处理算法,包括数字图像的大小调整归一化等,效果不错。-By SVM algorithm identifies MNIST handwritten digital library and added some preprocessing algorithms, including the size of the digital image adjustment normalized so good results.
FeatureExtractionUsingAlexNetExample
- 本示例展示了怎样从一个预处理的卷积神经网络中提取特征,并用这些特征去训练一个图像分类器。(This example shows how to extract learned features from a pretrained convolutional neural network, and use those features to train an image classifier. Feature extraction is the easiest and fastest way use
carplate
- 首先对车牌识别系统的现状和已有的技术进行深入的研究,然后开发出一个基于 Python 的车牌识别系统,文中先对车辆图像进行高斯去噪、灰度化和边缘检测等预处理方法,然后用颜色特征和形态特征相结合的方法来确定车牌位置,用彩色分割法来完成车牌分割,最后,运用 SVM 分类训练器完成字符识别并使用Python 软件环境进行车牌识别的仿真实验。(License plate recognition based on SVM)