搜索资源列表
复杂网络提取图像边缘特征
- 使用复杂网络提取图像边缘特征并进行识别的源代码,采用PCA_LDA算法对特征进行降维分类识别,识别效率很高。鲁棒性好
PCA_LDA.rar
- 《机器学习》课上的作业,PCA和LDA降维,尽管网上很多,但很少注释,另外细节上也没注意。这里有很详细的注释。另外还附上一个Naive贝叶斯分类器,大家可以作比较。附带的图像包是OLR人脸。ReducedDim为想要提取的特征数,不是百分比!," Machine learning" classes on the homework, PCA and LDA dimensionality reduction, even though a lot of online, but f
2DPCA降维然后在重构图像
- 2DPCA降维,然后在重构图像,对数据降维者非常有帮助。,2DPCA dimensionality reduction, and then in the reconstructed image, dimensionality reduction of data are very helpful.
FastICA_25
- 独立分量分析的算法,用于分离出独立分量,用于图像降维,特征提取-Independent component analysis algorithms, used to separate out the independent component for the image dimensionality reduction, feature extraction
ASD
- 自适应子空间分解(ASD)算法的程序。用于高光谱图像降维-ASD on hyperspectral
drtoolbox.tar
- 这是一个MATLAB工具箱包括32个降维程序,主要包括 pca,lda,MDS等十几个程序包,对于图像处理非常具有参考价值- ,This Matlab toolbox implements 32 techniques for dimensionality reduction. These techniques are all available through the COMPUTE_MAPPING function or trhough the GUI. The following techn
renlianshibie
- 利用PCA对人脸图像进行降维,然后训练神经网络分类器的Matlab程序-the Matlab in face recoginization using PCA algorithm
pca
- PCA降维方法,这是一个针对图像处理的PCA降维处理方法-The method of PCA,whic is used in the image processing.
PCA
- 对图像进行降维,用少量图像的主成分去描述整个图像以提高系统的效率。-Reduce the dimensions of the image, with a small amount of the principal component image to describe the whole image to improve the efficiency of the system.
empca
- PCA特征降维,用于图像处理人脸识别等模式识别领域和数据挖掘两领域-PCA feature reduction, image processing for face recognition and other pattern recognition and data mining of two areas
LinearDiscriminantAnalysis
- 提出了一种新的基于图像分块重构和线性判别分析相融合的方法,主要用于人脸识别。该方法通过计算两幅图像之间图 像块的重构均值误差,运用线性判别分析求出两幅图像降维后的欧式距离,融合重构误差和欧式距离计算这两幅图像之间的差别 程度。-A new block-based image reconstruction and the integration of linear discriminant analysis method is mainly used for face recognitio
meanshiftsegmentation
- 均值漂移图像分割测试程序,使用meanshift算法对彩色图像进行聚类分割,效果很好,并且显示使用时间、找到的类数,另包含RGB与LUV颜色空间的互相转换,图片矩阵数据转为降维数组等,程序中有详尽的注释和说明,并且配有测试结果图片,非常适合计算机视觉、机器学习、模式识别的朋友参考-failed to translate
pcapro
- 基于主成分分析的PCA算法,利用进行各类图像降维,达到精简计算过程的目的。-PCA based on principal component analysis algorithm for various images using dimensionality reduction to achieve the purpose of streamlining the calculation.
fsvmPpca-face-Recognition
- 首先用PCA对ORA人脸图像降维,然后用模糊支持向量机对提取的特征向量进行分类,识别率较高。-First using PCA for dimensionality reduction ORA face image, and then use fuzzy support vector machine to classify the extracted feature vectors, the recognition rate is higher.
example_knn(降维)
- knn降维算法用于图像分类,将所给样本遥感图像按照要求进行分类(KNN dimensionality reduction algorithm for image classification)
PCA
- 采用INP数据(145*145*200),该数据有16个类别, PCA进行数据降维,然后对降维数据采用kNN分类(k=1)。(Using INP data (145*145*200), the data has 16 categories, PCA carries out data reduction, and then uses kNN classification for dimensionality reduction data (k=1).)
PCA
- 用matlab自带的PCA算法对图像进行降维(Dimensionality reduction for images)
pca
- 大数据降维方法,具体的处理了图像等,包括数据的冗余部分,利用PCA技术快速降维。(Large data dimensionality reduction method.Specifically dealing with images, including redundant parts of data, and using PCA technology to reduce dimensionality rapidly.)
随机共振的Runge-Kutta解法
- 基于随机共振的二维图像降噪,内含说明,可直接使用(Two-dimensional image denoising based on random resonance)
KLT
- 本程序实现了利用KL变换进行特征分解,并进行降维重建,示例图片在文件中给出。(This program realizes feature decomposition using KL transform and dimensionality reduction reconstruction. The example pictures are given in the file.)