搜索资源列表
KMeanIntroduction
- 聚类分析是将集合中的数据按其相似性大小分成不同类别的一种方法,它是模式 识别中多变量无监督学习的一个分支,己成功地用于医学,地质,财务,工程,图像 处理和文档等的数据分类中;含有实现此算法的源码 -cluster analysis is to pool the data according to similar size into a different category, It is pattern recognition multivariable Unsupervised Le
FACERECOGNITIONBASEDONFRACTALANDGENETICALGORITHMS.
- 本文的题目是基于分形和遗传算法的人脸识别方法,对有限人群提出一种采用分形特征和遗传聚类的识别方法: 将图像分成很多小区域, 分别计算各个区域的分形特征, 以充分利用图像二维信息 同一个模式有多个样本, 通过遗传算法进行聚类以得到最优解实现不变性识别. 最后采用ORL 人脸图像库的一组图像对比了新方法、本征脸法和自联想神经网络方法, 结果表明该方法的识别率, 与本征脸法相似, 比自联想神经网络高.
mymulti1V1svm
- 模式识别中的一对一多类分类器,也称multiclasssvm
libsvm_setup
- 这是台湾大学林智仁(Lin Chih-Jen)副教授等人开发的SVM模式识别与回归的软件包,该软件可以解决C-SVM分类、-SVM分类、-SVM回归和-SVM回归等问题,包括基于一对一算法的多类模式识别问题。-This is the National Taiwan University, Lin Zhiren (Lin Chih-Jen), associate professor, who developed SVM pattern recognition and regression of t
moshi
- 几个模式识别的作业程序,自己写的。望指教哦,内容有感知器算法、多类感知器算法以及K均值算法-Several pattern recognition procedures, wrote it myself. Advice Oh look, the contents of perceptron algorithm, multi-sensor algorithm, as well as K-means algorithm
InductionofDecisionTrees
- 模式识别中多类分类问题决策树间接Induction of Decision Trees-Pattern Recognition in many types of decision tree classification of indirect Induction of Decision Trees
K_average
- K_average聚类分析程序,包含多个子文件,适用于模式识别和聚类分析-K_average
libsvm_src_2.6NOTE
- LIBSVM是台湾大学林智仁(Lin Chih-Jen)副教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件还有一个特点,就是对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数就可以解决很多问题;并且提供了交互检验(Cross Validation)的功能。该软件包可以在http://www.csie.ntu.edu.tw/~c
libsvm-mat-2[1].9-11
- LIBSVM是台湾大学林智仁(Lin Chih-Jen)副教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件还有一个特点,就是对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数就可以解决很多问题;并且提供了交互检验(Cross Validation)的功能。该软件包可以在http://www.csie.ntu.edu.tw/~c
prtools_ac
- 模式识别工具箱,含有多类模式识别函数,是学习和写论文的好工具。-patern recognition toolbox, which contains vairous patern recognition functions
Mean_C-based_multi-class_pattern_recognition
- 基于C均值的多类模式识别,满足正态分布的样本进行分类训练。-Mean C-based multi-class pattern recognition, classification of samples to meet the normal training.
libsvm-2.9
- LIBSVM是台湾大学林智仁(Lin Chih-Jen)副教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件包可在http://www.csie.ntu.edu.tw/~cjlin/免费获得。该软
libsvm-3.12
- LIBSVM是台湾大学林智仁副教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件可以解决C-SVM、ν-SVM、ε-SVR和ν-SVR等问题,包括基于一对一算法的多类模式识别问题。-The LIB
libsvm-master
- LIBSVM是台湾大学林智仁(Lin Chih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件可以解决C-SVM、ν-SVM、ε-SVR和ν-SVR等问题,包括基于一对一算法的多类模式
SVM+GUI+V3.1[mcode]
- 基于多类的支持向量机SVM的算法简单介绍(Based on multiclass support vector machines, SVM algorithm is introduced briefly)
libsvm-3.22
- LIBSVM是台湾大学林智仁(Lin Chih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件可以解决C-SVM、ν-SVM、ε-SVR和ν-SVR等问题,包括基于一对一算法的多类模式
LIBSVM
- LIBSVM是台湾大学林智仁(Lin Chih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件可以解决C-SVM、ν-SVM、ε-SVR和ν-SVR等问题,包括基于一对一算法的多类模式
kmeans
- 对数据和图像进行聚类分析,k-means聚类方法多应用于模式识别,人工智能,机器学习等方面(Clustering analysis of data and images, K-means clustering method should be used in pattern recognition, artificial intelligence, machine learning and so on)
libsvm-3.22
- LIBSVM是台湾大学林智仁(Lin Chih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件可以解决C-SVM、ν-SVM、ε-SVR和ν-SVR等问题,包括基于一对一算法的多类模式
SVM_libsvm
- LIBSVM是台湾大学林智仁(Lin Chih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件可以解决C-SVM、ν-SVM、ε-SVR和ν-SVR等问题,包括基于一对一算法的多类模式