搜索资源列表
三弯矩插值
- 三弯矩插值法 lagrange多项式插值 多项式最小二乘法 龙贝格积分法 分段线性插值 三转角插值 这些是数值分析中常用的集中经典方法,运用matlab展示出来!-three polynomial interpolation Hangzhou least squares polynomial interpolation Romberg integration subparagraph Line sex angle interpolation three interpola
三转角插值
- 三弯矩插值法 lagrange多项式插值 多项式最小二乘法 龙贝格积分法 分段线性插值 三转角插值 这些是数值分析中常用的集中经典方法,运用matlab展示出来!-three polynomial interpolation Hangzhou least squares polynomial interpolation Romberg integration subparagraph Line sex angle interpolation three interpola
lagrange多项式插值
- 三弯矩插值法 lagrange多项式插值 多项式最小二乘法 龙贝格积分法 分段线性插值 三转角插值 这些是数值分析中常用的集中经典方法,运用matlab展示出来!-three polynomial interpolation Hangzhou least squares polynomial interpolation Romberg integration subparagraph Line sex angle interpolation three interpola
插值多项式
- 用c++编写的关于多项式插值的算法-used for the preparation of the polynomial interpolation algorithm
Java实现牛顿插值多项式为基础的线性插值
- Java实现牛顿插值多项式为基础的线性插值,并输出插值后的图形,Java realization of Newton' s interpolation polynomial-based linear interpolation, and the graphics output after interpolation
空间插值方法汇总
- Inverse Distance to a Power(反距离加权插值法) Kriging(克里金插值法) Minimum Curvature(最小曲率) Modified Shepard s Method(改进谢别德法) Natural Neighbor(自然邻点插值法) Nearest Neighbor(最近邻点插值法) Polynomial Regression(多元回归法) Radial Basis Function(径向基
main
- 分段线性插值,分段二次多项式插值,分段三次多项式插值,三次样条插值-Piecewise linear interpolation, sub-quadratic polynomial interpolation, sub-cubic polynomial interpolation, cubic spline interpolation
interpolation
- 多项式插值与拟合及实例分析,图像处理中可以用到的-Polynomial interpolation and fitting, and examples of analysis, image processing can be used
visualbasic
- 一本非常实用的编程工具书,常用的数值计算的vb源代码,及其运算公式和测试例子 包括微积分 求导和多项式插值-A very useful programming tool, commonly used in numerical calculation of the vb source code, and the computing formula and test examples include calculus, and polynomial interpolation derivatio
fenglong07323206
- 一个菜单界面,分别用菜单命令来绘制原数据曲面图,线性插值,最近点插值,3次多项式插值,3次样条插值后的图形,每次插值都可以在同一图形界面下比较插值前后图形。-A menu interface, respectively, using the menu command to map the original data surface map, linear interpolation, nearest point interpolation, polynomial interpolation 3
shuzhijisuan
- 里面有用MATLAB自编的几个数值计算方面的几个程序,有拉格朗日多项式插值法,高斯消去法求解方程组,最小二乘法拟合,复合梯形公式求解数值积分-Some Useful MATLAB self inside the numerical calculation of the number of procedures, Lagrange polynomial interpolation method, Gaussian elimination method for solving equations,
matlab插值与数据拟合
- 使用matlab的插值与数据拟合,含有插值原理,方程,插值方法有:拉格朗日多项式插值,分段线性插值,三次样条插值,最小二乘法,有多个实例(有源码、语句、结果、图像等)
插值runge现象
- 针对高次插值runge的学习代码,比较段数N不同时分段线性插值和三次样条插值,均给出误差曲线。(In view of the learning code of high order interpolation Runge, the number of comparison segments N does not simultaneously piecewise linear interpolation and three cubic spline interpolation, and the e
拉格朗日插值+MATLAB源程序代码
- 拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。(The Lagrange interpolation method can find a polynomial that happens to be taken to the observed value at the point of each observation. Mathematically, the Lagrange interpo
插值与拟合
- matlab经典算法的程序\插值与拟合 包括多项式的拟合,多项式的插值,有经典算例(The program of the classical matlab algorithm -- interpolation and fitting)
47206
- 多项式插值求解 案例 希望有所帮助 , 自带案列 和图(The program should include a function generalInterpolation(fs,xs) that finds the interpolating polynomial including in cases where there are repeated points (inlcuding Hermite interpolation, where the points are doubled,
牛顿插值法
- 利用牛顿插值法获取多项式系数,同时绘制插值函数和原函数对比图(Obtaining polynomial coefficients by Newton interpolation method and draw the comparison diagram of the interpolation function and the original function at the same time)
线性插值法
- 线性插值是指插值函数为一次多项式的插值方式,其在插值节点上的插值误差为零。线性插值相比其他插值方式,如抛物线插值,具有简单、方便的特点。线性插值的几何意义即为概述图中利用过A点和B点的直线来近似表示原函数。线性插值可以用来近似代替原函数,也可以用来计算得到查表过程中表中没有的数值。(Linear interpolation means interpolation function with polynomial interpolation, and its interpolation error
五次多项式插值
- matlab五次多项式插值曲线拟合代码,速度与加速度都是平滑的,比三次多项式好。
样条插值
- 样条插值的研究背景,样条函数的力学意义,三次样条插值多项式的构造,一般的插值问题(Research background of spline interpolation, mechanical meaning of spline function, construction of cubic spline interpolation polynomials, general interpolation problems)