搜索资源列表
绘制三次参数样条插值曲线
- 绘制三次参数样条插值曲线
绘制三次参数样条插值曲线 (3KB).ZIP
- 绘制三次参数样条插值曲线 (3KB).ZIP,快来下载-drawing three parameters spline interpolation curve (3KB). ZIP, breaking download Bowl
绘制三次参数样条插值曲线
- 采用VB绘制三次参数样条插值曲线,非常好看,方便!-using VB drawing three parameters spline interpolation curve, very good looking, easy!
插值原理还原波形曲线(误差改进版)
- 三次样条插值的VC源码,带有示例,测试通过-cubic spline code based on VC++
ThreeCurve
- 用MFC做的可以实现画三种平滑曲线的程序(三次样条插值,贝塞尔曲线,GDI+曲线平滑)-Using MFC to do three pictures to achieve a smooth curve of the procedure (cubic spline interpolation, Bezier curves, GDI+ curve smoothing)
3107002005_5th_NEWTON
- 牛顿插值方法,一种最基本的曲线插值算法,简单易用,效率高-Newton interpolation methods, a basic curve interpolation algorithm, easy-to-use, high efficiency
SplineDemo_lhd
- 三次样条插值程序演示。在SplineDemoView.cpp文件中的函数BOOL CSplineDemoView::ZSpline3()和函数double Spline3(double)是实现三次样条插值算法的核心函数。用VC6.0编译运行后,在窗口上由左至右点击鼠标左键设置一些点,然后点击鼠标右键即绘出穿过这些点的三次样条插值曲线。-Cubic spline interpolation procedure demonstration.
MathMethod
- 应用拉格朗日插值法,进行曲线拟合,可生成拟合曲线显示图像-Application of the Lagrange interpolation method for curve fitting, curve fitting to generate display images
VBSpline
- 三次样条 三次参数样条插值曲线 -Spline
第4章 插值
- 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。插值:用来填充图像变换时像素之间的空隙。(On the basis of discrete data, a continuous function is inserted to make the continuous curve pass through all the given discrete data points.
CBI_1
- 均匀三次B样条曲线插值,给定若干点求出曲线(Uniform three times B spline curve interpolation, given a number of points to find the curve)
VC++三次样条插值和贝塞尔曲线实例程序
- VC++三次样条插值和贝塞尔曲线实例程序(VC++ three spline interpolation and Bessel curve example program)
拉格朗日插值
- 运用拉格朗日原理对曲线进行拟合插值c语言程序源代码(Lagrange curve interpolation C language source code)
MATLAB三次样条插值法 求信号的包络线 源代码
- MATLAB三次样条插值法 求信号的包络线 源代码(MATLAB cubic spline interpolation method for the signal envelope source code)
插值方法
- 插值算法:插值方法包括:(1)线性插值(2)抛物插值(3)拉格朗日插值。三种方法都是利用离散的数据近似模拟曲线函数走向,从而给出指定离散点对应的函数值。选用不同类型的插值函数,逼近的效果不同,线性插值需要根据给定的两个点,抛物插值需要给定三个点,一般形式则通过拉格朗日插值来求解(Interpolation algorithms: interpolation methods include: (1) linear interpolation (2) parabolic interpolation
拟合曲线
- 鼠标点击任意两点,两点之间进行直线拟合,继续点击,增加点的数目,多点之间进行多次插值拟合(Mouse click any two points, between two points to a straight line fitting, continue to click, increase the number of points, multiple points between multiple interpolation fitting)
厄尔米特插值与高斯消去解法
- 用厄尔米特插值法拟合曲线,用高斯消去法解线性方程。(The Earl milt interpolation method is used to fit the curve, and the Gauss elimination method is used to solve the linear equation.)
插值runge现象
- 针对高次插值runge的学习代码,比较段数N不同时分段线性插值和三次样条插值,均给出误差曲线。(In view of the learning code of high order interpolation Runge, the number of comparison segments N does not simultaneously piecewise linear interpolation and three cubic spline interpolation, and the e
反算NURBS曲线插值控制点并计算NURBS插值曲线
- 对于给定的数个离散数据点,使用3次NURBS(非均匀有理B样条曲线)进行插值拟合。该算法程序能够反算出NURBS曲线控制点并绘制经过给定离散点的插值曲线。(For a given number of discrete data points, the 3 NURBS (nonuniform rational B spline curve) is used for interpolation fitting. The algorithm can calculate the control poin
NURBS插值插补
- 实现非均匀有理B样条曲线(NURBS)插值插补功能(Realization of interpolation interpolation function of NURBS curve)