搜索资源列表
BGM
- 本文提出了一种静止摄像机条件下的运动目标检测与跟踪算法。 它以一种改进的自适应 混合高斯模型为背景更新方法,用连通区检测算法分割出前景目标,以 Kalman滤波为运动模型实现对运动目标的连续跟踪。在目标跟踪时,该算法针对目标遮挡引起的各种可能情况.
1
- 在基于视觉检测方式的泊位自动引导系统中,从序列图像中提取泊位飞机,检测泊位飞机的阴影区域,是泊位系统实现的关键。基于高斯混合模型的背景分割算法被广泛应用于静态背景分割中,但是该算法在处理高分辨率图像时,算法实时性显著下降 分割体积大而且运动缓慢的物体时,容易产生“拖尾”现象 不能检测出运动物体的阴影区域。为此提出了基于分层图像的改进高斯混合模型背景分割算法,有效地克服了算法实时性差和“拖尾”现象。在此基础上,提出了基于色彩特征和区域特征相结合的阴影检测算法,利用部分空间约束信息,检测出运动物体的
run
- 基于混合高斯模型的背景减除实现程序,速度还可以,但是效果不是特别好,还有待改进-Gauss mixture model background subtraction procedure based on the implementation, can also speed, but the effect is not particularly good, there is room for improvement
改进的高斯混合背景模型的实现
- 利用改进的高斯混合模型对前景目标的提取有较好的作用,这是基于OpenCV的C++程序,请安装OpenCV库进行调试(The improved Gauss mixture model has a good effect on foreground target extraction. This is a C++ program based on OpenCV. Please install OpenCV library for debugging)
automatic_image_segement
- 本文以k-means算法为背景,引入信息熵相关知识,从而实现全自动分割图像。然而在利用混合高斯模型对图像进行数据分析时,会发生一定的过拟合现象,导致我们得不到预期的聚类数目。本文设计合理的合并准则,令模型简化,有效地消除过拟合现象,使得最后得到的聚类数目与预期符合。,设计合理的准则改进了图像的全自动分割方法,使得分割结果更加优化(In this paper, k-means algorithm is used as the background, and information entropy