搜索资源列表
nsga2_Matlab_xixilee
- 对多目标优化算法NSGA-II算法的改进,该算法进化代数少,但是获得的最终效果特别好!-pair of multi-objective optimization algorithm NSGA-II algorithm, the algorithm evolutionary less algebra, However, the ultimate effect was particularly good!
NSGAII
- 实现了NSGA-II,有仿真图和结果,说明了改进算法的优势-achieve NSGA-II,there are graph and results,so the method is more good.
NSGA-II
- MATLAB的NSGA改进后的算法-MATLAB' s NSGA improved algorithm
NSGA2-dynamic
- 多目标优化进化算法目前公认效果收敛性最好的算法NSGA2c++源码,具有一般性,可在此基础上继续改进,对实现其他多目标优化算法很有帮助.-Multi-objective optimization evolutionary algorithm is currently the best recognized effect of convergence of the algorithm NSGA2c++ Source, with the general, could be on this basis
mo-nsga-deb
- 改进的非支配排序遗传算法,求解多目标问题-non dominated sorted algorithm II for multiple objective problem
NSGA-II
- nsga-2算法实现多目标优化,改进了nsga算法。是一种先进的遗传算法-nsga-2 multi-objective optimization algorithm, improved nsga algorithm. Is an advanced genetic algorithm
NSGA-II
- 针对现有改进和声搜索算法(IHS) 的不足,提出一种自适应和声粒子群搜索算法(AHSPSO).-For the purpose of avoiding the disadvantage of improved harmony search (IHS) algorithm, an adaptive harmony search-particle swarm optimization (AHSPSO) algorithm is presented.
MOEA-NSGA-II
- NSGA算法是遗传算法在多目标优化上的实现,NSGA-2则是NSGA算法的改进算法,该程序包能实现NSGA-2的多目标优化-NSGA algorithm is a genetic algorithm on a multi-objective optimization, NSGA-2 is the improved algorithm NSGA algorithm, the package can achieve multi-objective optimization NSGA-2
INSGA-II
- 针对NSGA-II算法存在重复个体的问题进行改进INSGA--Improvements INSGA-II for the NSGA-II algorithm duplicate individual problems
NSGA2
- NSGA2主要是对NSGA算法的改进。NSGA是N. Srinivas 和 K. Deb在1995年发表的一篇名为《Multiobjective function optimization using nondominated sorting genetic algorithms》的论文中提出的。该算法在快速找到Pareto前沿和保持种群多样性方面都有很好的效果-Multiobjective function optimization using nondominated sorting gen
Improved-NSGA-II-Optimization
- 对NSGA-II算法进行改进,并应用于柔性车间调度的多目标优化问题-Of NSGA-II algorithm was improved and applied to flexible shop scheduling multi-objective optimization problem
3
- 目前的多目标优化算法有很多,Kalyanmoy Deb 的 NSGA-II(Nondominated Sorting Genetic Algorithm II,带精英策略的快速非支配排序遗传算法)无疑是其中应用最为广泛也是最为成功的一种。MATLAB 自带的 gamultiobj 函数所采用的算法,就是基于 NSGA-II 改进的一种多目标优化算法(a variant of NSGA-II)。gamultiobj 函数的出现,为在 MATLAB 平台下解决多目标优化问题提供了良好的途径。gamu
毕业论文《NSGA—II的改进算法研究》
- 是一个对多目标遗传算法进行改进的硕士论文,比较有价值。(It is a master's thesis to improve the multiobjective genetic algorithm, which is of great value.)
遗传优化工具箱 - NSGA-II
- 改进的遗传算法,多目标优化算法,简单,快捷有效(Improved Genetic Algorithm)
A-NSGA-III
- 新版改进NSGA算法A-NSGA-III,用于软件仿真平台对比于MOEA/D,PSO等多种算法。(The new version of improved NSGA algorithm a-nsga-iii is used for software simulation platform comparison with MOEA/D,PSO and other algorithms.)
NSGA-III
- 一种改进的适用于高维的进化算法,采用参考点等方法。(evolutionary algorithm)
遗传算法多目标优化模板
- 利用geatpy库是实现多目标优化, 基于改进NSGA-Ⅱ算法求解多目标优化问题的进化算法模板,传统NSGA-Ⅱ算法的帕累托最优解来只源于当代种群个体,这样难以高效地获取更多的帕累托最优解,同时难以把种群大小控制在合适的范围内,改进的NSGA2整体上沿用传统的NSGA-Ⅱ算法,不同的是,该算法通过维护一个全局帕累托最优集来实现帕累托前沿的搜索,故并不需要保证种群所有个体都是非支配的。(Using geatpy library to realize multi-objective optimiza
NSGA-III
- 新一代nsga算法源代码,其中包含详细的代码及说明。(Jan and Deb, extended the well-know NSGA-II to deal with many-objective optimization problem, using a reference point approach, with non-dominated sorting mechanism. The newly developed algorithm is simply called: NSGA-III.
NSGA
- 多目标遗传算法是NSGA-II[1](改进的非支配排序算法),该遗传算法相比于其它的多目标遗传算法有如下优点:传统的非支配排序算法的复杂度为 ,而NSGA-II的复杂度为 ,其中M为目标函数的个数,N为种群中的个体数。引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度。采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性
多目标遗传算法论文
- 快速非支配排序和精英选择策略的改进多目标遗传算法NSGA-II