搜索资源列表
2LMSE最小均方误差算法
- 模式识别中关于 LMSE最小均方误差算法 一中算法-pattern recognition on the wan minimum mean square error algorithm an algorithm
基于LMS(最小均方误差算法)的自适应滤波的源程序
- 基于LMS(最小均方误差算法)的自适应滤波的源程序,基于matlab-based on the LMS (minimum mean square error algorithm) adaptive filtering of the source, based on Matlab
最小均方误差算法
- 这是智能天线的最小均方误差算法程序,非常好用,使在matlab中实现的。
MMSE
- 最小均方误差估计(MMSE)语音增强算法,算法简单有效,无残余音乐噪声-Minimum mean square error estimation (MMSE) speech enhancement algorithm is simple and effective, non-residual musical noise
mmse
- 最小均方误差(MMSE)的算法用MATLAB的仿真-mmse
TDLMS
- 图像处理中应用非常广泛的二维最小均方误差算法(TDLMS)。绝对好用!-Image Processing is widely used two-dimensional MMSE algorithm (TDLMS). Absolute ease of use!
lms
- 智能天线算发中的最小均方误差算法,运行后可以直接出结果-Smart Antenna count made in the MMSE algorithm, after running the results can be directly
TheResearchofSpatialSpectrumEstimationAlgorithminS
- 智能天线技术是第三代移动通信系统的关键技术之一,也是国内外热门的研究课题。由于无线移动通信的信道传输环境具有复杂性和不确定性,存在多径衰落和时延扩展,因此造成了符号间串扰、同信道干扰、多址干扰等,这些干扰降低了链路性能和系统容量,智能天线技术是解决以上问题的方法之一。 本文首先阐述了智能天线和白适应波束形成的基本理论,然后对自适应算法进行了研究。对一些基本的自适应算法最小均方算法、恒模算法及递推最小均方算法进行了分析讨论,用计算机仿真的结果论证了算法的性能。针对相干干扰介绍了空间平滑技术,对传统
RLS
- RLS最小均方误差算法的自适应滤波程序及其应用-Least-mean-square error RLS adaptive filtering algorithm and its application procedure
MATLAB_Programming_LMS_Adaptive_Equalizer
- 一个MATLAB程序,用以实现基于最小均方误差算法的自适应均衡器,通常可以直接应用在数字通信系统中-A MATLAB program used to implement an LMS adaptive equalizer which can be directly applied in the digital communication systems
SNR_and_MSE
- mmse与snr的算法仿真,最小均方误差和最大信噪比,获得自适应算法的最优权,实现抗干扰-mmse snr algorithm and simulation, the minimum mean square error and maximum signal to noise ratio, the right of access to optimal adaptive algorithm to achieve anti-jamming
lms
- 本程序可用于实现最小均方误差算法-LMS algorithm
BP
- 神经网络的计算,包括训练和测试两部分,利用的是最小均方误差算法。-Nerual network calculation,including training and working part,utilizing MMSE algorithm.
Least Squares Maximum Likelihood as Algorithm
- 最小二乘,极大似然定位算法,其中包括二维和三维的最小均方误差定位算法以及连续定位算法(Least squares, maximum likelihood localization algorithm, which includes two-dimensional and three-dimensional minimum mean square error localization algorithm and continuous positioning algorithm)
二维最小均方误差TDLMS(主要用于小目标跟踪)
- 二维最小均方误差背景预测算法TDLMS,常用于目标检测,经实测,效果较好(Two dimensional minimum mean square error background prediction algorithm TDLMS, commonly used in target detection, measured, the effect is better)
OMLSA
- 这是目前传统单通道语音增强中效果最好的算法,作者Iseal Cohen大神,采用基于最小均方误差MMSE准则,代码里,噪声估计由最初的MCRA更新为效果更好的IMCRA。(This is the most effective algorithm for traditional single channel speech enhancement. The author, Iseal Cohen great God, uses the minimum mean square error MMSE c
LRSs
- 递归最小二乘(RLS)是一种自适应滤波算法,它可以递归地找到最小化加权线性最小二乘代价函数与输入信号相关的系数。这种方法与其他算法相比较,例如最小均方(LMS),旨在减少均方误差。在RLS的推导中,输入信号被认为是确定性的,而对于LMS和类似的算法,它们被认为是随机的。(Recursive least squares (RLS) is an adaptive filter algorithm that recursively finds the coefficients that minimiz
SS
- 加权质心定位算法(zhixin.m)、最小均方误差的二维定位算法(LSM2.m)、最小均方误差的三维定位算法(LSM3.m)、最小二乘/极大似然用于目标跟踪(MLS1.m)、最小二乘/极大似然用于纯方位目标跟踪(MLS2.m)(Weighted centroid positioning algorithm)
lms
- 基于LMS算法的均衡器,使用MATLAB仿真,最小均方误差均衡中的最小均方算法(LMS)的matlab程序(Equalizer based on LMS algorithm)