搜索资源列表
BayesClassifier
- 自己做的贝叶斯分类器,包括基本贝叶斯,最小风险贝叶斯以及Neyman-Pearson决策-Do bayes classifier, including basic bayesian, the minimum risk bayesian and Neyman-Pearson decisions
classification
- 在具有模式的完整统计知识条件下,按照贝叶斯决策理论进行设计的一种最优分类器。分类器是对每一个输入模式赋予一个类别名称的软件或硬件装置,而贝叶斯分类器是各种分类器中分类错误概率最小或者在预先给定代价的情况下平均风险最小的分类器。-In a model under the condition of complete statistical knowledge, in accordance with the Bayesian decision theory to design an optimal c
bayes
- 贝叶斯决策包含最小风险和最小错误概率两种情况的仿真-Bayesian decision-making included the minimum risk and minimum error probability of the two simulation
Minimum-Risk-Bayes-classifier
- 这是模式识别中最小风险Bayes分类器的设计方案。在参考例程的情况下,自行完善了在一定先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。 全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。 调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从
gender-classification-experiments
- 这是用身高体重数据进行性别分类的实验。 用最小错误率贝叶斯分类器决策时,首先通过比较概率大小判断一个体重身高二维向量代表的人是男是女,然后再逐一与已知性别的数据比较,就可以得到错误率的统计。然后改变先验概率,重复上面的过程,观察数据结果的变化。 用最小风险贝叶斯分类器决策时,首先求出用最小错误率贝叶斯分类器得到的条件概率;然后根据人为给定的决策表,根据公式算出条件风险;然后逐一比较条件风险,找出使条件风险最小的决策(也就是分类)。最后用分类得到的结果逐一比较已经知道的原始数据,统计处错误
based_on_bayes_decsion_theory
- 基于贝叶斯决策理论的最小错误率和最小风险分类器设计。-Minimum error rate and minimum risk classification based on Bayesian decision theory.
bayes2
- 最小风险贝叶斯决策 模式识别 贝叶斯分类器设计-Minimum risk Bayesian decision pattern recognition Bayesian classifier design
bayes
- 关于贝叶斯决策的一些算法,最大最小风险项-Some algorithms on Bayesian decision, maximum and minimum risk items
m1
- 实现贝叶斯分类器,按最大概率和最小风险的分类决策-Implement Bayesian classifier, according to the maximum and minimum risk probability of classification decisions
贝叶斯判决
- 假定某个局部区域细胞识别中正常w1和非正常w2 两类先验概率分别为: 正常状态:P(w1)=0.9 ; 异常状态:P(w2)=0.1 。 现有一系列待观察的细胞,其观察值为: -2.67 -3.55 -1.24 -0.98 -0.79 -2.85 -2.76 -3.73 -3.54 -2.27 -3.45 -3.08 -1.58 -1.49 -0.74 -0.42 -1.12 4.25 -3.99 2.88 -0.98 0.79 1.19 3.07 两类的类条件概率符合正态分布