搜索资源列表
极限学习机源代码
- 图像的特征提取 图像的分类 实现elm算法
在线序贯极限学习机
- 在线极限学习机matlab code,实现在线机器学习!
ELM-java
- 极限学习机(ELM)在java下的实现算法,此为eclipse项目,已经添加好可用的jar包,调整文件路径后可以直接运行,(PS.极限学习机算法为elm官网所提供)(Extreme learning machine (ELM) in Java implementation algorithm, this is the eclipse project, has added a good jar package, adjust the file path can be directly run (P
ELM
- 新加坡南洋理工黄教授编写的极限学习机的算法实现(the implementation of extreme learning machine)
Compelx-ELM
- 复数极限学习机,通过复数处理,将极限学习机扩展到复数领域,效果很好(Complex limit learning machine, through the complex processing, the limit learning machine extended to the complex domain, the effect is very good)
由Java编写的极限学习机毕业设计源代码
- 基于Java的极限学习机源代码,可用于毕业设计。(Java based limit learning machine source code.)
ELM
- 用于使用极限学习机算法进行分类问题,采用MATLAB编写,适合论文写作(Classification algorithms are used for the use of the extreme learning machine algorithm)
OS-ELM在线极限学习机
- 此代码是OS-ELM在线极限学习机,内含训练集和测试集。(This code is the OS-ELM online extreme learning machine, containing training set and test set.)
elm
- 极限学习机,分类和回归,有程序,数据和相关案例(ultimate learning machine classification and regression, procedures, data, and examples.)
ELM_MatlabClass
- 极限学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值以及隐元的偏置,并且产生唯一的最优解,因此具有学习速度快且泛化性能好的优点。该程序是用于极限学习机分类。(Extreme learning machine only need to set the number of hidden nodes of the network, the algorithm execution process does not need to adjust the input weight
elm_kernel
- 极限学习机是最近比较流行的一种单隐层前馈神经网络,核极限学习机是极限学习机的改进版,此文件为核极限学习机的代码实现(Code implementation of extreme learning machine)
极限学习做特征选择思路1
- 极限学习机是一个快速的但因曾神经网络学习算法(Extreme learning is a fast learning method)
基于极限学习G-score
- G-score是一个特征排序的准则,极限学习机结合G-score是一种filter+wrapper的混合特征选择算法(G-score is a criterion of feature sorting. Limit learning machine combined with G-score is a hybrid feature selection algorithm of filter+wrapper)
07 极限学习机(Extreme Learning Machine, ELM)
- ELM算法指出,其实隐层的权值矩阵W和偏置b其实是没有必要调整的,在学习算法开始时,任意随机给定W和b的值,利用其计算出H(隐层节点的输出),并令其保持不变,需要确定的参数就只有β了。这是一个比较重要的理论基础。(The ELM algorithm is pointed out, in fact, hidden layer weights matrix W and B is not necessary to adjust the bias of the learning algorithm, i
极限学习机
- 极限学习机分类器,训练函数与预测函数,以及数据实例(Extreme Machine Classifiers, Training and Prediction Functions, and Data Instances)
基于极限学习机的预测
- 针对非线性预测问题,建立极限学习机的预测模型,将数据样本分为训练样本和测试样本,并采用误差指标进行评价。(Aiming at the problem of non-linear prediction, the prediction model of extreme learning machine is established. The data samples are divided into training samples and test samples, and the error i
基于极限学习机ELM的数据分类
- 针对数据分类问题,提出了基于极限学习机的分类方法,将数据样本分为训练样本和测试样本,并采用准确率指标进行评价。(Aiming at the problem of data classification, a classification method based on extreme learning machine is proposed. The data samples are divided into training samples and test samples, and the
爬山法-遗传算法-极限学习机
- 爬山改进遗传算法,提供更快的收敛速度,并用于优化极限学习机权值(Mountain climbing improved genetic algorithm to provide faster convergence speed and to optimize the weight of extreme learning machine)
核极限学习机
- 核极限学习机程序,可以直接调用,满足分类要求。(Extreme Learning Machine Program)
深度(多层)极限学习机的python实现
- 深度极限学习机也叫多层极限学习机,ML-ELM。是黄广斌等人在极限学习机ELM基础上,将其拓展为深度学习的一种模式识别方法,原文文章:Representational learning with extreme learning machine for big data。(The deep extreme learning machine is also called the multi-layer extreme learning machine, ML-ELM. It is Huang Gu