搜索资源列表
enhance1
- 加权中值滤波,用于图像增强,只用于超声图像,对超声图像去噪有很好的效果。内还包括信噪比计算方法。-weighted median filter for image enhancement, only for ultrasound images of ultrasound image denoising with very good results. Which is also a signal-to-noise ratio calculation.
PDEbasedImageFiltering
- 用PDE实现图像滤波PDE based Image Filtering,提高图像的信噪比。-with PDE image filtering PDE based Image Filtering, improve image quality.
matched_filter.rar
- 匹配滤波的实际仿真程序。分别对宽带和窄带信号进行了仿真,并且求的滤波后信号的信噪比。,Matched filtering of the actual simulation program. Separately for broadband and narrowband signals, simulation, and after filtering for signal-noise ratio.
compress edsensing OMP
- 压缩感知 正交匹配追踪一些人关心压缩感知与雷达成像,他们把稀疏表示放在最重要的地方,以为在雷达成像中成功实现压缩感知关键是稀疏表示; 事实上并不是如此。我们知道:压缩感知需要建立AX=B,且该方法具有较低的抑制信噪比能力;另外雷达成像的基础是雷达 信号与目标的相互作用,也就是电磁波与介质的相互作用,该相互作用是一个非常复杂的非线性问题,因此研究这个问题与 压缩感知的关系才是解决雷达成像问题的关键点所在。从另外一个角度来看,雷达成像中惯用的方法是匹配滤波,
zxl
- 利用维纳图像复原,并采用直接逆滤波、信噪比维纳滤波、自相关函数维纳滤波、中值滤波进行横向、纵向比较-Image restoration using Wiener and direct inverse filtering, Wiener filtering noise ratio, since the correlation function Wiener filtering, median filtering for horizontal, vertical comparison
pipeilvboqifangzhenshixian
- 实现匹配滤波仿真的两个程序,每个程序生成四个图,可以通过比较验证信号的时延不影响匹配滤波的输出信噪比,及不同信号信噪比与信号波形无关,只与信号能量有关-Matched filter to achieve the two simulation procedures, each of the programs to generate the four plans, you can verify by comparing the signal delay does not affect the mat
Wienerfiltering
- 改进的维纳滤波在地震资料处理中的应用(地震勘探、信噪比、维纳滤波)-At the Wiener filter to improve seismic data processing application (seismic exploration, signal to noise ratio, Wiener filtering)
Communication-Principle-Experiment
- 给出了通信原理课程的相关实验程序源码,包括DSB、ASK,抽样及其滤波、信噪比分析及眼图。-Communication Theory courses give the experimental procedures related to the source, including DSB, ASK, sampling and filtering, signal to noise ratio analysis and eye diagram.
suiji1
- 不同信噪比噪音的维纳滤波程序,matlab实现-Different signal to noise ratio of noise Wiener filtering procedures, matlab implementation
matchfilter
- 雷达信号处理中的匹配滤波器设计,实现最大信噪比输出-Radar signal processing in the matched filter designed for maximum signal to noise ratio output
SSSS
- 通过建立运动模糊数学模型, 进行了消除运动模糊的仿真实验, 维纳滤波恢复运动模糊图像效果较 好。在图像恢复技术中, 点扩展函数( PSF) 是影响图像恢复结果的关键因素, 所以常常利用先验知识和后验判 断方法估计PSF函数来恢复图像。实验表明在实际恢复过程中如果运动模糊图像混入了噪声, 必须考虑到信噪 比、噪声的自相关函数和原始图像的自相关函数对恢复后图像的影响。-Through the establishment of mathematical model of motion
VariableNoisySpeechEnhancementAlgorithmPerformance
- 语音增强是影响语音识别系统性能的重要成分。为了比较语音增强算法的性能,采用Matlab软件进行了数值仿真,对不同噪声环境下的语音用3种不同的方法进行降噪,采用信噪比、端点检测等方法来降噪效果,并对几种增强算法的性能进行了比较分析。结果表明,在变噪声环境下短时谱MMSE法最佳,谱减法和维纳滤波法各有优点。-Speech enhancement of voice recognition is an important component of system performance. In order
MTALAB雷达
- 不同信噪比条件下的LFM匹配滤波结果。 服从均匀分布 ,高斯分布, 瑞利分布的 噪声序列。 雷达非相干积累的输出。雷达相干积累。 雷达对数正态分布杂波,瑞利杂波,韦伯杂波仿真。 有说明文档,有注释。(LFM matched filtering results under different SNR conditions. A sequence of noise obeying uniform distribution, Gauss distribution, and Rayleig
all_noise_gaussian
- 分别对加入椒盐噪声和高斯噪声的图像通过高斯滤波器进行滤波,输出滤波后的图像以及信噪比。(The images of adding salt and pepper noise and Gaussian noise are filtered by Gaussian filter respectively, and the filtered image and signal to noise ratio are output.)
all_noise_average
- 分别对加入椒盐噪声和高斯噪声的图像通过均值滤波器进行滤波,输出滤波后的图像以及信噪比。(The images of adding salt and pepper noise and Gaussian noise are filtered by the mean filter respectively, and the filtered image and signal to noise ratio are output.)
all_noise_weiner
- 分别对加入椒盐噪声和高斯噪声的图像通过维纳滤波器进行滤波,输出滤波后的图像以及信噪比。(The image of adding salt and pepper noise and Gaussian noise is filtered by Wiener filter, and the filtered image and signal to noise ratio are output.)
all_noise_medium
- 分别对加入椒盐噪声和高斯噪声的图像通过中值滤波器进行滤波,输出滤波后的图像以及信噪比。(The image of adding salt and pepper noise and Gaussian noise is filtered through the median filter, and the filtered image and signal to noise ratio are output.)
chap5
- 用于雷达信号的匹配滤波,提高信号信噪比,方便检测信号(Used for matching filtering of radar signals, improving signal to noise ratio and convenient detection of signal)
滤波
- 原始信号会有噪声,进行信号的滤波处理,使信号的信噪比更高(The original signal will have noise, and filter the signal, so that the signal to noise ratio of the signal will be higher.)
心电信号检测与分类算法的研究
- (1)心电信号预处理 心电信号是一种低频且含有众多噪声干扰的信号。针对心电信号存在的 噪声干扰问题,本文采用了平稳小波变换结合双变量阈值的方法对其进行去 噪处理。通过对心电信号进行八层平稳小波变换,得到不同的小波系数,采 用双变量阈值函数表达式对其进行处理得到新的小波系数,最后进行逆平稳 小波变换实现小波重构,完成心电信号去噪。Matlab 仿真结果显示,本文算 法的准确率较高,信噪比达到 84.5934dB。 (2)心电信号波形识别 反映心电信号的特征部分往往是信号的突变点,因此需