搜索资源列表
计算几何算法
- 计算几何常用算法,包括点是否在多边型中,判定两条直线是否相交,平面最近点对-computational geometry algorithm commonly used, including whether a multilateral type in determining whether the intersection of two straight, the nearest point on Plane
最近点对
- 这是一个经典的寻找最近点对的算法实现,运用VC编写,采用类的方式,是程序更易理解。-This is a classic look for the nearest point of the algorithm, using VC preparation, the type used, the way the process easier to understand.
求解最近点对
- 利用二分法算法求解最近点对
最近点对问题,分别用蛮力法和分治法进行了求解
- 最近点对问题,分别用蛮力法和分治法进行了求解,算法已经做过优化-Nearest point on the issue, respectively, and with brute force method for solving divide and conquer algorithm optimization has been done
ClosestPair 二维最近点对算法
- 二维最近点对算法,分别用遍历方法和分治算法实现,并对实现的时间进行比较-Two-dimensional nearest point of the algorithm, respectively, and partition with traversal algorithm, and compare the time to achieve
nearestPointPair
- 给定一个点数组,比较求解最近点对的一般算法和分治法的效率。-Given a point group, compared to solve the nearest point on the general algorithm and divide and conquer efficiency.
ClosetPairs
- 本算法使用分治法求解最近点对问题。事先用O(nlogn)时间对x坐标进行排序,使得所有的点是按x坐标从小到大排好序的(x坐标相同时y坐标小的排前),然后取下标小于n/2属于左边的点集PL,取下标大于n/2属于右边的点集PR,即用O(1)时间就可以将规模为n的问题分解为两个规模为n/2的、同类型的子问题。分割完毕之后就可以采用分治法,分别求出PL和PR中的最近点对,最终通过递归实现。-This algorithm uses divide and conquer to solve the probl
DivConquer
- 算法实验:1 分治法在数值问题中的应用 ——最近点对问题 2 减治法在组合问题中的应用——8枚硬币问题 3 变治法在排序问题中的应用——堆排序 4 动态规划法在图问题中的应用——全源最短路径问题 -Algorithm experiment: 1 divided numerical problems in the application- the nearest point to question 2 by governance problems in the applicati
nearestpoint
- 求最近点对的算法,使用分治法求解最近点对问题-For the nearest point of the algorithm, the use of sub-rule method to solve the problem nearest point
random
- 含有随机算法,素数测试,求最近点对的随机算法-Contains a random algorithm, prime number test, seek the nearest point of the random algorithm
zuijindianduierwei
- 算法 最近点对问题 二维的解决 很简单 值得-Closest point algorithm to solve the problem is very simple two-dimensional worth a look
zuijindianduiyiwei
- 算法 最近点对 一维问题解决 可以下载下来研究下-Closest point algorithm to solve one-dimensional problem under study can be downloaded
zuijindian
- 这是我自己写的一个最近点对的问题的算法实现 -This is my own point of writing of a recent algorithm for the problem ~ ~
closepair
- 二位平面中求最近点对的问题,采用分治的方法,按照书本的算法实现-Two nearest points on the plane ask the question, the use of divide and conquer approach, in accordance with the books of the algorithm
algorithm_project2
- 这是求在一堆点中,找出最短距离的两个点对的算法问题。(Point pair problem with the shortest distance.)
ClosestPair
- 求解平面最近点对,分治经典题目。。。。。。。(The program to solve the nearest point pair of the plane, divide and conquer the classic topic.)
迭代最近点算法综述
- 三维点集配准问题是计算机技术中的一个极其重要的问题,作为解决三维点集配准问题的一个应用较为广泛的算法,ICP算法得到了研究者的关注,本文以一种全新的思路从配准元素的选择、配准策略的确定和误差函数的求解等3个方面对三维点集配准的ICP算法的各种改进和优化进行了分类和总结。(The three-dimensional point set registration problem is an extremely important issue in computer technology. As an
closest_pair_of_points
- C++11标准下编写的平面最近点对算法,包括暴力算法与O(nlogn)的算法。使用纯面向对象的方式编写,提供了测试类。(The plane closest point pair algorithm based on C++11 standard, including the algorithm of violent algorithm and O (nlogn). Written in a purely object-oriented way, it provides test classes.
平面内最近点对
- 分治算法练习,使用分治算法实现计算平面内最近点对距离。子问题将平面划分为左右两部分分开计算最短距离,再在中间条带中找是否有更近点对。(Divide and conquer algorithm to calculate the closest point pair in the plane)
最近令近点对
- 用C++实现最近邻近点对,利用算法导论的知识实现最近邻近点对问题(Using C++ to implement nearest neighbor pairs, we use the knowledge of algorithm introduction to realize nearest neighbor point pairs.)