搜索资源列表
qpsk_rayleigh&awgn_ber&powerspec
- qpsk调制在awgn/rayleigh信道下的误码性能比较,以及信号的功率谱和星座图-QPSK modulation in awgn / Rayleigh Channel Performance Comparison of error, and the signal power spectrum and constellation
qpsk.rar
- 加性高斯白噪声信道条件下的QPSK信号的调制与解调,观察了调制信号的功率谱图,输入输出信号图,已经时间误码率图与理论误码率的比较,Additive white Gaussian noise channel under the conditions of the QPSK signal modulation and demodulation, observed power spectra of modulated signals, input and output signal maps, pla
powerspectrum
- 运用自相关法,周期图法和burg法分析加噪信号功率谱并比较-The use of auto-correlation method, periodogram analysis burg and noise signal power spectrum and compare
Untitled2
- 功率谱估计,包括周期图法,burg法,music法,和welch法,并绘图比较-psd,pmusic,pburg
UCA
- 用均匀圆阵对信号进行方向估计,并仿真功率谱图。同时与均匀等距线阵进行比较,圆阵估计效果更好。-With uniform circular array direction of the signal estimates, and simulation of power spectra. At the same time with the uniform linear array were compared equidistant, round patches is estimated better
Burg_VC
- 介绍了现代功率谱估计中的B哩算法最大嫡谱估计的基本原理,并采用VC+十语言对 功率谱密度(鹅D)进行了仿真。同时比较了BI雌算法和经典谱估计中Bardett周期图法,针对Burg算法中的 模型阶次的选择进行了分析,提出了最佳模型阶次采用最终预报误差(I下E)为准则的结论。 -Introduction of modern power spectrum estimation algorithm B mile maximum entropy spectral estimation prin
qamand16psk
- 主要是QAM与16PSK频谱仿真、误码率比较仿真以及各自的星座图-Mainly QAM spectrum with 16PSK simulation, emulation, and error rate between the respective constellation
Welch
- 从经典功率谱估计周期图法原理入手,从理论上分析了其存在的局限性,借助Welch算法对其进行修正。依靠Matlab强大的数值分析和信号处理能力,进行实验仿真,比较不同的窗函数,不同的数据长度对Welch法谱估计质量的影响,并分析了造成这些影响的原因。-The paper mainly introduces the principles of Periodogram method of classical PSD estimation,analyzes the deficiency of Perio
ptlx
- 流形学习的主要目标是发现嵌入在高维数据空间的低维光滑流形1 近年来基于谱图理论的学 习算法受到研究者的广泛关注1 介绍了流形与流形学习的关系,着重研究了几种有代表性的基于谱图 理论的流形学习算法,并对算法进行了比较分析,最后进行总结和对进一步的研究做了展望1-The main objective of manifold learning is to find embedded in high-dimensional data space of a low-dimensional smo
STAP_opt
- 该程序利用空时二维自适应处理的原理,采用最优处理器的方法,对杂波矩阵进行处理,并能够绘制出二维杂波功率谱图,功率谱亮度图,特征谱图,二维频响图,以及最优化比较图-the code can draw 5 pictures of the Clutter matrix,including :Clutter power spectrum, power spectral brightness diagram, characteristic spectra, two-dimensional frequenc
m.file
- 语音增强算法,谱减法、小波变换以及数学形态学等的语音增强算法针对信噪比、语谱图、去噪情况,分析比较-Speech enhancement algorithm, spectral subtraction, wavelet transform and mathematical morphology speech enhancement algorithm for signal-to-noise ratio, the spectrogram denoising situation analysis
04
- 对原图分别在频域内使用理想低通滤波器(选择任意截止频率)和理想高通滤波器(选择任意截止频率)和理想高通滤波器,再对其使用快速傅里叶变换,并输出修复后的图像的频率谱图。最后将高通滤波与低通滤波后的相加,输出,并与原图进行比较。-Respectively of the original image in the frequency domain using the ideal low-pass filter (choose an arbitrary cut-off frequency) and th
Rc16_8
- 该程序利用空时二维自适应处理的原理,采用最优处理器的方法,对杂波矩阵进行处理,并能够绘制出二维杂波功率谱图,功率谱亮度图,特征谱图,二维频响图,以及最优化比较图-The program is the use of space-time two-dimensional adaptive processing principle, the optimal processor, clutter matrix processing, and be able to draw a two-dimension
yuputu
- matlab编程,画出一段语音的语谱图,在不同时间声音的不同频率,可以比较出有声段和无声段的能量不同。-Matlab programming, draw the spectrogram of a voice, the sound of different frequencies in different time, you can compare audio segment and the energy of the silent segment.
gaojieqiyizhi
- 通过比较奇异谱图和高阶奇异谱图得出结论:高阶奇异谱分析能够更好的二次确定嵌入维数。最后根据Takens嵌入定理进行相空间的重构。-By comparing the spectra of singular spectrum and higher-order singular conclusion: High singular spectrum analysis to better determine the embedding dimension of the secondary. Finally
EMD-hilbert-IMF
- 本程序主要通过EMD和hilbert求IMF,作出HHT归一化能量谱图(三维图),边际谱图和瞬时能量图,并做完备性验证,比较好用-This program mainly by EMD and Hilbert and the IMF, make the HHT normalized energy spectra (three-dimensional figure), marginal spectrum and instantaneous energy diagram, completeness,
one
- 产生右图所示图像f1(m,n),其中图像大小为256×256,中间亮条为128 ×32,暗处=0,亮处=100。对其进行FFT: ① 同屏显示原图f1(m,n)和FFT(f1)的幅度谱图; ② 若令f2(m,n)=(-1)m+n f1(m,n),重复以上过程,比较二者幅度 谱的异同,简述理由; ③ 若将f2(m,n)顺时针旋转90 度得到f3(m,n),试显示FFT(f3)的幅 度谱,并与FFT(f2)的幅度谱进行比较; ④ 若将f1(m,n) 顺时针旋转90 度得到
Untitled2
- AR模型不同阶次和不同采样点数得到的功率谱图比较,并与周期图法进行比较。-AR model of different orders and different sampling points obtained the power spectrum comparison, and compared with the cycle diagram method.
Untitled3
- 周期图法、welch法和自相关函数法的功率谱图的比较。-Comparison of Power Spectra of Periodic Graph Method, WELCH Method and Autocorrelation Function Method.
itoolbox
- 协同区间偏最小二乘 siPLS算法是 N rgaard等对其提出 的 iPLS方法的改进, 其基本算法步骤如下:(1)对原始谱图进行 预处理;(2)在全谱范围内建立全局偏最小二乘模型, 即上节的 模型;(3)在整个光谱区间采用 iPLS建立多个等窗口宽度的子 区间, 假设为 n个;(4)在每个子区间上建立偏最小二乘法模型, 即可得到 n个局部模型;(5)以交叉验证时的均方根误差 RMSE 值为各模型的精度衡量标准, 比较全光谱模型和各局部模型的 精度;(6)组合精度最高的局部子区间