搜索资源列表
贝叶斯分类器
- 贝叶斯一维分类器,用matlab编写,正态分布下男女生判别,最小错误率的贝叶斯分类
bayes
- 用matlab完成基于最小错误率的贝叶斯分类器的设计-Done with matlab error rate based on the minimum design of Bayesian classifier
judger
- 最小错误率和最小风险贝叶斯分类器,附带示例数据-Minimum error rate and minimum risk Bayes classifier, with sample data
question1
- 最小错误率的贝叶斯分类器设计matlab代码实现-Bayes minimum error rate classifier design matlab code
beiyesi
- 使用最小错误率贝叶斯分类器对学生成绩进行分类-Minimum error rate using Bayesian classifier to categorize student achievement
classifier
- 两类二维相关正态分布条件下的最小错误率贝叶斯分类器,基于最小风险的贝叶斯分类器,Parzen窗法非参数估计分类器程序,Fisher线性判别法分类器程序。-Under normal conditions two types of two-dimensional correlation of minimum error rate of Bayesian classifier, the minimum risk-based Bayesian classifier, Parzen window meth
Bayes
- 传统贝叶斯分类器,最小错误率贝叶斯分类器、最小风险贝叶斯分类器-Traditional Bayesian classifier, the minimum error rate classifier, minimum risk Bayes classifier
Bayes
- 贝叶斯分类器,基于最小错误率的贝叶斯分类器-Bayes
Minimum-Bayes-classifier-error-rate
- 这是模式识别中最小错误率Bayes分类器设计方案。 自行完善了在不同先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。 全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。 调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从而得到概率密度
Minimum-Risk-Bayes-classifier
- 这是模式识别中最小风险Bayes分类器的设计方案。在参考例程的情况下,自行完善了在一定先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。 全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。 调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从
gender-classification-experiments
- 这是用身高体重数据进行性别分类的实验。 用最小错误率贝叶斯分类器决策时,首先通过比较概率大小判断一个体重身高二维向量代表的人是男是女,然后再逐一与已知性别的数据比较,就可以得到错误率的统计。然后改变先验概率,重复上面的过程,观察数据结果的变化。 用最小风险贝叶斯分类器决策时,首先求出用最小错误率贝叶斯分类器得到的条件概率;然后根据人为给定的决策表,根据公式算出条件风险;然后逐一比较条件风险,找出使条件风险最小的决策(也就是分类)。最后用分类得到的结果逐一比较已经知道的原始数据,统计处错误
bayes1
- 最小错误率贝叶斯决策 模式识别 贝叶斯分类器设计-Minimum error rate Bayesian decision pattern recognition Bayesian classifier design
bayes
- matlab基于最小错误率的贝叶斯分类器设计-Bayesian classifier design matlab minimum error rate
贝叶斯分类器设计
- 利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化。
clj
- 利用统计特征方法中的基于正态分布的最小错误率贝叶斯分类器实现简单的手写数字识别应用程序-digital recognition
Bayes_classifier
- 贝叶斯决策论是解决模式分类问题的一种基本统计途径。其出发点是利用概率的不同分类决策与相应的决策代价之间的定量折中。贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化。-Bias classifier with minimum error rate.
模式识别第一次作业
- 1. 用 dataset1.txt 作为训练样本,用dataset2.txt 作为测试样本,采用身高和体重数据为特征,在正态分布假设下估计概率密度(只用训练样本),建立最小错误率贝叶斯分类器,写出所用的密度估计方法和得到的决策规则,将该分类器分别应用到训练集和测试集,考察训练错误率和测试错误率。将分类器应用到dataset3 上,考察测试错误率的情况。(1. using dataset1.txt as training samples as test samples by dataset2.tx
work
- 1) 以身高为例,画出男女生身高的直方图并做对比; 2) 采用最大似然估计方法,求男女生身高以及体重分布的参数; 3) 采用贝叶斯估计方法,求男女生身高以及体重分布的参数(假定方差已知,作业请注明自己选定的一些参数情况); 4) 采用最小错误率贝叶斯决策,画出类别判定的决策面。并判断某样本的身高体重分别为(160,45)时应该属于男生还是女生?为(178,70)时呢?(1) taking height as an example, draw the histogram of male and f
Sciprts
- 用 dataset3 作为训练数据,用 dataset4 作为测试数据,采用不同的特征、训练样本数、分类方法进行比较实验,观察、分析实验结果的异同。 训练分类器的方法为最小错误率贝叶斯分类器(假设正态分布,先验概率各 50%)。使用Bayesscr ipt.m运行代码。(Using dataset3 as training data, dataset4 is used as test data, and different characteristics, training samples an
贝叶斯判决
- 假定某个局部区域细胞识别中正常w1和非正常w2 两类先验概率分别为: 正常状态:P(w1)=0.9 ; 异常状态:P(w2)=0.1 。 现有一系列待观察的细胞,其观察值为: -2.67 -3.55 -1.24 -0.98 -0.79 -2.85 -2.76 -3.73 -3.54 -2.27 -3.45 -3.08 -1.58 -1.49 -0.74 -0.42 -1.12 4.25 -3.99 2.88 -0.98 0.79 1.19 3.07 两类的类条件概率符合正态分布