搜索资源列表
Gauss_Seidel迭代法
- 用C语言来实现的一个程序,可以求解线生方程组,比LU分解法求解速度快。- A program ,Using language c to relize ,can solve the line system of equations and rapider than a program with the way of LU Resolution
27_142
- 矩阵计算的c++代码,本矩阵类实现了对矩阵的一些基本操作,比如 +, -, *,求逆等。 实现了矩阵的列主元LU分解,并利用它实现了线性代数方程组的直接解法;还有线性方程组的迭代解法。 另外定义了一些非数学上但经常用到的一些操作 比如两个矩阵对应元素的相乘、相除,对矩阵的每个元素求abs,sqrt等-matrix calculation of c code, the matrices of the matrix to achieve some basic tasks, such
非线性方程组的迭代解法
- 非线性方程组的迭代解法,包括:简单迭代法、Newton法、割线法、拟Newton法等.详见程序注释-nonlinear equations of the iterative solution, including : simple iterative method, Newton, secant, to the Newton law. Detailed procedures Notes
SOR_迭代
- 重点内容是计算中的误差、函数方程求根、插值呆逼近、数值积分和微分、线性代数方程组解法、常微分方程初值问题的数值解法、数学软件。 -focus on the calculation of the error, solving functional equations, interpolation stayed approximation, numerical integration and differentiation, linear algebraic equations method,
线性方程组求解与方程组性态讨论
- 线性方程组求解与方程组性态讨论(实验报告)三次样条插值问题,数值积分,微分方程数值解,线性方程组的迭代解法,非线性方程的迭代解法-solving linear equations and the equations behavior discussion (Experiment), cubic spline interpolation, numerical integration, the numerical solution of differential equations, linear
work2
- 在matlab环境下对偏微分方程的Jacobi迭代解法的算法实现
MPI
- 数值并行算法MPI编程实现 第十八章 矩阵运算 第十九章 线性方程组的直接解法 第二十章 线性方程组的迭代解法 第二十一章 矩阵特征值计算 第二十二章 快速傅氏变换和离散小波变换
linear-simultaneous-equations
- 源码里包括线性方程组各种解法的Matlab例程,包括LU分解直接解法,夹克比迭代法、GS迭代法、SOR迭代法,共轭梯度法等。
NumericalAnalysis
- 用JAVA编写的一个界面程序,实现了二分法、牛顿法、高斯法、SOR迭代法、三角分解法、三次样条插值曲线、曲线拟合的最小二乘法、数值积分Romberg算法、常微分方程的初值解法 改进Euler法、矩阵的特征值和特征向量 反幂法-An interface with a JAVA program written to achieve a dichotomy, Newton method, Gauss law, SOR iteration method, triangular decomposition
NewtonIterationMethod
- 通过使用Newton迭代法求解方程 并分析它的解法收敛性; 牛顿迭代法是比较适合用计算机来计算。 -Through the use of Newton iteration method for solving equations and analyze the convergence of its solution Newton iteration is more suitable for the computer to calculate.
equation
- 分别用高斯消去法,三角分解法,Jacobi迭代法,GS迭代法,SOR迭代法求解Ax=b-Separately using Gaussian elimination, triangular decomposition, Jacobi iterative method, GS iterative method, SOR iterative method for solving Ax = b
Gaussseidel
- 数值分析中的Gaussseidel迭代算法,能够实现线性方程组的数值解法- Gaussseidel numerical analysis of iterative algorithms, linear equations to achieve the numerical solution
newton2
- 非线性方程组的牛顿迭代方法与非线性方程解法类似,也是求解非线性方程组的常用方法。-Nonlinear equations of the Newton iteration method and nonlinear equations similar to solving nonlinear equations is a common method.
linear-simultaneous-equations
- 线性方程组LU分解直接解法,GS迭代、夹克比迭代、SOR迭代等Matlab代码-linear simultaneous equations
方程解法
- 基于matlab的不动点迭代法、二分法以及牛顿法求解方程,进一步优化了计算步骤。(Fixed point iterative method for solving equations based on Matlab)
解线性方程组
- 求解线性方程组的方法:高斯赛德尔迭代法,LU分解法(Solving linear equations by Gauss Seidel iteration)
ill-conditioned system of equations
- 分别用几种经典的数值分析迭代算法求解线性方程组(Solving linear equations by several classical numerical analysis iterative algorithms)
非线性方程解法相关程序
- 用二分法以及迭代法求解非线性方程、非线性方程组的例子(An example of solving nonlinear equations and nonlinear equations by the dichotomous method and iterative method)
5线性方程组的迭代解法—Jacobi迭代法
- 使用matlab编写了Jacobi迭代法的函数,并通过例子进行了验证。(The function of Jacobi iteration method is written by MATLAB, and is verified by an example.)
解线性方程组的迭解法
- 解线性方程组的迭解法,包括高斯-赛德尔迭代法和雅克比迭代法(Solution of iterative solution of linear equations, including Gauss - Seidel iterative method, Jacobi method)