搜索资源列表
DG-of-POSITION-AND-CAPACITY
- 本程序用于求解以网损、电压偏差、投资运行费用最小为目标的配电网分布式能源选址定容问题,并辅以相关文献。-This procedure is used to solve the loss, voltage deviation, minimum operating cost investment objective distribution network of distributed energy locating and sizing issues, supplemented by releva
DGxuanzhidingrong
- 分布式电源的一些研究论文,主要为分布式电源的选址定容-Some research papers distributed power, mainly for siting distributed power constant volume
DG_PSO
- 利用PSO算法求解分布式电源的选址定容问题,并考虑了分布式电源的随机性-Randomness of the PSO algorithm DG locating and sizing issues and considered the DG
reapprear_test
- 应用粒子群算法对IEEE33节点进行容量优化(Particle swarm optimization algorithm is used to optimize the capacity of IEEE33 nodes)
选址定容
- 用于加入分布式电源的电力系统选址定容,方便实用。(It is convenient and practical for locating and sizing power system with distributed generation.)
风场和电容器
- 电容器选址定容优化问题的实现方法,结合风电场问题给出解决方案。(The method for realizing the optimization of the capacitor's site-to-capacity optimization problem and the solution of the wind farm problem are given.)
分布式电源选址定容的多目标优化算法_夏澍
- 多目标粒子群算法优化分布式发电选址 实现了最优目标,包含了分布式电源的出力模型(Related papers on location and sizing of distributed generation)
选址定容
- 经典遗传算法,简单易懂。适合初学者使用,是分布式电源的选址定容的算法(Classical genetic algorithm is simple and easy to understand. It is suitable for beginners to use. It is an algorithm for locating and sizing distributed power.)
GA
- 遗传算法,简单易懂。适合初学者使用,是分布式电源的选址定容的算法,做了相应的改进(Classical genetic algorithm is simple and easy to understand. It is suitable for beginners to use. It is an algorithm for locating and sizing distributed power.)
GAOT
- 基于改进的遗传算法,简单易懂。适合初学者使用,是分布式电源的选址定容的算法(Classical genetic algorithm is simple and easy to understand. It is suitable for beginners to use. It is an algorithm for locating and sizing distributed power.)
免疫优化算法
- 是分布式电源的选址定容的免疫优化算法算法,是最基本的遗传算法,基本实现了选址定容的功能(It is an inheritance algorithm for location and capacity of distributed power supply and the most basic genetic algorithm. It basically realizes the function of location and capacity determination.)
reconfiguration
- 是分布式电源的选址定容的改进的遗产算法算法,是最基本的遗传算法,基本实现了选址定容的功能(It is an inheritance algorithm for location and capacity of distributed power supply and the most basic genetic algorithm. It basically realizes the function of location and capacity determination.)
NSGA-II
- 电网优化,能够用于分布式电源的选址定容,也可以用于电网的网架优化计算等等(Power network optimization)
选址定容
- 可实现分布式发单69节点配电网系统的分布式发电选址定容问题(Distributed power generation site selection and constant volume problem for distributed billing 69-node distribution network system)
33节点DG最优分布
- 通过粒子群算法实现在33节点中的分布式电源的选址定容(Location and capacity determination of distributed generation in 33 nodes by particle swarm optimization)
布谷鸟DG规划
- 通过布谷鸟群算法对设定的多个目标进行优化,并最终获得分布式电源的最优选址定容(Through the CUCKOO swarm algorithm to optimize the set of multiple objectives, and finally obtain the optimal location of distributed generation capacity)