搜索资源列表
基于RBF神经网络的CPI预测
- 采用RBF神经网络的结构、特性和训练算法,根据CPI(消费者物价指数)与其影响因素之间存在的映射关系,应用神经 网络建立了多因素非线性时间序列预测模型。最后通过仿真实验和研究,把RBF神经网络与传统的BP网络预测结果进行比较,结果证明,该模型的预测精确度更高,结果令人满意。
采用BP神经网络进行非线性预测
- 该代码包括单隐含层BP和双隐含层BP。建立基于BP神经网络的预测模型,对数据进行随机排列,选取训练样本和测试样本,训练样本训练网络,测试样本进行验证(The code includes single hidden layer BP and double hidden layer BP. Establish a prediction model based on BP neural network, arrange the data randomly, select training sample
基于遗传算法优化BP神经网络的非线性预测
- 针对BP神经网络的初始权值和阈值是随机选取的弊端,采用遗传算法寻优BP的初始权值和阈值,然后进行BP训练和测试。遗传算法包括编码 选择 交叉 和变异等操作(Aiming at the disadvantage that the initial weights and thresholds of BP neural network are randomly selected, genetic algorithm is used to optimize the initial weights and