搜索资源列表
龙格--库塔法
- 龙格-库塔法是工程中常用的求解微分方程的一种方法.而且具有四阶精度,因此应用很广泛.改程序给出了其源代码.-Runge - Kutta method is commonly used in engineering solving a differential equation methods. But with four bands precision, it is widely used. Changed its procedures is the source code.
龙格库塔求解微分方程数值解
- 工程中很多的地方用到龙格库塔求解微分方程的数值解, 龙格库塔是很重要的一种方法,尤其是四阶的,精确度相当的高。
四阶龙格库塔法解一阶二元微分方程
- 四阶龙格库塔法解一阶二元微分方程 //dxi/dt=c*(xi-xi^3/3+yi)+K*(X-xi)+c*zi //dyi/dt=(xi-b*yi+a)/c //i=1,2,3 //X=sum(xi)/N
MyRunge_Kutta
- 实现四阶龙格库塔算法,求解非线性方程或是非线性方程组。-To achieve fourth-order Runge-Kutta algorithm for solving nonlinear equations or nonlinear equations.
EquationGUI-II
- 采用四阶龙格——库塔算法,应用MATLAB编写的常微分方程、偏微分方程求解算法及界面。 关键词:gui,ode,pde,difference method, runge kutta,euler,heun MATLAB版本:7.0 (R14)-EULER.m HEUN.m Rk4.M implement euler heun and runge kutta fourth order to solve ODE VANDERPOLODE.m LOGISTICOODE.m PREDAPREDA
MyRK4sys
- 四阶龙格库塔法解常微分方程组 四阶龙格库塔法解常微分方程组-4-Runge-Kutta
2007511145848565_136Z_Com
- 四阶龙格库塔法求解微分方程,Visual C++ 环境下编译-4RK typical numerical analysis procedures, with four bands Runge- Kutta method to solve initial value problems
naviga090205
- 前人用四阶龙格库塔方法进行微分方程解算,用matlab编写的源代码,主要用于四元素微分方程的实时解算,上传-Using fourth-order Runge-Kutta methods for differential equation solvers, prepared to use matlab source code, mainly for the four elements of real-time differential equation solver
four-stepRunge-Kuttastatutoryfour-stepRunge-Kuttam
- 解微分方程(组)的定步长四阶龙格库塔法算法源代码-Solution of differential equations (Group) of fixed step size fourth-order Runge-Kutta method algorithm source code
shuzhijifen
- 基于VC环境的面向方程的数值积分算法,本程序以卫星在空中运行的运动方程为例,采用四阶-龙格库塔算法解微分方程,以bmp图片给出输入参数和界面,很好的阐述了如何利用四阶-RK解微分方程-VC-based environment equation-oriented numerical integration method, this program runs the satellite equations of motion in the air, for example, using fourth
Fourth-orderRungeKutta-rule
- 四阶龙格-库塔法则求解微分方程,四阶龙格-库塔法则求解微分方程-Fourth-order Runge- Kutta rule for solving differential equations, fourth-order Runge- Kutta rule for solving differential equations
Three-pointmethodLaunchVehicleTrackingSystem
- 三点法跟踪运载火箭系统跟踪目标弹作匀速直线运动,拦截弹做匀速率运动。里面微分方程是用欧拉法求解的,为了提高精确度,改成四阶龙格库塔法-Tracking system to track the target missile launch vehicle for uniform linear motion, interceptor uniform rate of movement to do. Which is Euler' s method for solving differential
sijielonggekutafajieyijiechangweifenfangcheng
- 本程序是用Visual Biasic 实现用四阶龙格-库塔方法对一阶常微分方程(其通式为dy/dx=m-qx(m,q为常数))求解,并用点表示出各函数值在坐标轴上的位置。 龙格-库塔(Runge-Kutta)方法是一种高精度的单步法,比欧拉格式更精确,它采用了间接使用泰勒级数的技术。他既保留了泰勒公式的精度高的特点又避免过多的计算导数值。他是有泰勒公式推倒出的,因此它要求所求的解应具有较好的光滑性。 坐标表示其位置,这样可以直观的看出不用微分方程解的位置以及它们的联系。 -This
四阶龙格库塔法解振荡方程VC++实现及画图
- 四阶龙格库塔法解振荡方程VC++实现及画图,一般使用VB编写不能画图,此程序经过改进能很好拟合。
四阶龙格库塔法程序——_FORTRAN语言编写
- 关于Runge-Kutta方法,该方法是用来解形如y'=f(t,y)的常微分方程的经典的4阶R-K方法,用fortran语言编写(With respect to the Runge-Kutta method, the method is used to solve the classical 4 order R-K method of ordinary differential equations such as y'=f (T, y), and is written in FORTRAN la
zd530003514 (2)
- 一个matalb的四阶龙格库塔法解二阶微分方程的案列,附带一个FFT变换程序,供初学者参考(A MATALB four order Runge Kutta method for solving the two order differential equations for reference for beginners)
bin
- 学习,是指通过阅读、听讲、思考、研究、实践等途径获得知识或技能的过程,学习用于计算龙格库塔四阶方程。(Four order equations of Runge Kutta)
洛伦兹-龙格库塔
- 用四阶龙格库塔计算洛伦兹方程,人后运用Grapher绘制出洛伦兹方程的相图(Using the four order Runge Kutta to calculate Lorenz equation)
龙格库塔法的编程
- 龙格库塔求解微分方程数值解,工程中很多的地方用到龙格库塔求解微分方程的数值解, 龙格库塔是很重要的一种方法,尤其是四阶的,精确度相当的高(Runge Kutta is used to solve the numerical solution of differential equation in many places in the project, Rungekutta is a very important method, especially the fourth-order one,
四阶龙格-库塔法
- 利用四阶龙格库塔求解微分方程,并给出方程实例。(The fourth order Runge Kutta is used to solve the differential equation and an example is given.)