搜索资源列表
longgeceshi 四阶龙格库塔法解微分方程组实例
- 四阶龙格库塔法解微分方程组实例,没有调用函数,而是在基本含义基础上进行编译,有助于对龙格库塔法的理解。-Fourth-order Runge-Kutta method for solving differential equations instance, did not call the function, but on the basis of the basic meaning of compiler, contribute to the understanding of Runge-Ku
MTALABandsimulink
- 用四阶龙格库塔法求非线性系统的输入相应,同时用simulink建模比较。 -Using fourth-order Runge-Kutta method for the corresponding input nonlinear systems, and modeling using simulink comparison.
MyRunge_Kutta
- 实现四阶龙格库塔算法,求解非线性方程或是非线性方程组。-To achieve fourth-order Runge-Kutta algorithm for solving nonlinear equations or nonlinear equations.
main
- 导弹弹道仿真计算程序,采用四阶龙格库塔法,为研究导弹弹道仿真提供有效计算方法-Missile trajectory simulation program, using fourth-order Runge-Kutta method for the study of the missile trajectory simulation provides an effective method
用四阶龙格库塔法求解
- 用四阶龙格库塔法求解一阶微分方程组的通用程序,C++编写-Fourth-order Runge-Kutta method for solving a common procedure order differential equations, C++ writing
1
- 4阶龙格库塔方程,给出了一个实例,并且写出详细的步骤和过程,看到就能会。-4-order Runge-Kutta equations, given an instance, and write detailed steps and processes that can be.
EquationGUI-II
- 采用四阶龙格——库塔算法,应用MATLAB编写的常微分方程、偏微分方程求解算法及界面。 关键词:gui,ode,pde,difference method, runge kutta,euler,heun MATLAB版本:7.0 (R14)-EULER.m HEUN.m Rk4.M implement euler heun and runge kutta fourth order to solve ODE VANDERPOLODE.m LOGISTICOODE.m PREDAPREDA
2007511145848565_136Z_Com
- 四阶龙格库塔法求解微分方程,Visual C++ 环境下编译-4RK typical numerical analysis procedures, with four bands Runge- Kutta method to solve initial value problems
vsrk4
- 龙格-库塔(Runge-Kutta)法是一种不同的处理,作为多级方法为人们所知。 它要求对于一个简单的校正计算多个 f 的值。 这里是变步长四阶龙格库塔法的c程序-Runge- Kutta [Runge-Kutta] method is a different treatment, as a multi-stage method for people to know. It requires a simple correction for the calculation of
naviga090205
- 前人用四阶龙格库塔方法进行微分方程解算,用matlab编写的源代码,主要用于四元素微分方程的实时解算,上传-Using fourth-order Runge-Kutta methods for differential equation solvers, prepared to use matlab source code, mainly for the four elements of real-time differential equation solver
sijielonggekutafajieyijiechangweifenfangcheng
- 本程序是用Visual Biasic 实现用四阶龙格-库塔方法对一阶常微分方程(其通式为dy/dx=m-qx(m,q为常数))求解,并用点表示出各函数值在坐标轴上的位置。 龙格-库塔(Runge-Kutta)方法是一种高精度的单步法,比欧拉格式更精确,它采用了间接使用泰勒级数的技术。他既保留了泰勒公式的精度高的特点又避免过多的计算导数值。他是有泰勒公式推倒出的,因此它要求所求的解应具有较好的光滑性。 坐标表示其位置,这样可以直观的看出不用微分方程解的位置以及它们的联系。 -This
龙哥库塔-c语言
- 用c语言编写的龙哥库塔方法求解微分方程组,N代表积分变量的个数,step-积分步长。
四阶龙格库塔法程序——_FORTRAN语言编写
- 关于Runge-Kutta方法,该方法是用来解形如y'=f(t,y)的常微分方程的经典的4阶R-K方法,用fortran语言编写(With respect to the Runge-Kutta method, the method is used to solve the classical 4 order R-K method of ordinary differential equations such as y'=f (T, y), and is written in FORTRAN la
数值分析方法
- 数值分析程序,包括4阶龙格库塔,牛顿迭代法, 高斯赛德尔迭代法(Numerical analysis program, including 4 order Runge Kutta, Newton iterative method, Gauss Seidel iterative method)
超松弛插值与改进欧拉法 龙格库塔法
- 拟合超松弛线性插值,改进欧拉法与龙格库塔算法(Fitting the relaxation linear interpolation, the improved Euler method and Runge Kutta algorithm)
龙哥库塔
- 应用龙格库塔法,解决迫击炮的弹道轨迹,可以调节道道的角度,有图片展示。(Using the Runge Kutta method to solve the trajectory of the mortar, the angle of the road can be adjusted and the picture can be displayed.)
w2
- 利用欧拉法,改进欧拉法,四阶龙格库塔,求解常微分方程(Using the improved Euler Euler method, four order Runge Kutta method for ordinary differential equations.)
洛伦兹-龙格库塔
- 用四阶龙格库塔计算洛伦兹方程,人后运用Grapher绘制出洛伦兹方程的相图(Using the four order Runge Kutta to calculate Lorenz equation)
龙格库塔法的编程
- 龙格库塔求解微分方程数值解,工程中很多的地方用到龙格库塔求解微分方程的数值解, 龙格库塔是很重要的一种方法,尤其是四阶的,精确度相当的高(Runge Kutta is used to solve the numerical solution of differential equation in many places in the project, Rungekutta is a very important method, especially the fourth-order one,
四阶龙格-库塔法
- 利用四阶龙格库塔求解微分方程,并给出方程实例。(The fourth order Runge Kutta is used to solve the differential equation and an example is given.)