搜索资源列表
Background_GMM.rar
- 混合高斯模型,建立背景模型,从而可以分离前景与背景,Gaussian mixture model, background model, which can be separated from foreground and background
backgroundSubtraction_v0
- 基于graphcut的背景建模程序,其中具备阴影去除功能,建模时对rgb三个颜色通道进行了高斯模型训练。程序需要OpenCV 1.0 的支持。-This is a C implementation of background subtraction given a set of background frames as a training set.The background model is per-pixel RGB space Gaussian, assuming independenc
1
- 自适应核密度估计运动检测方法 提出一种自适应的核密度(kernel density estimation, KDE)估计运动检测算法. 算法首先提出一种自适应前景、背景阈值的双阈值选择方法, 用于像素分类. 该方法用双阈值能克服用单阈值分类存在的不足, 阈值的选择能自适应进行, 且能适应不同的场景. 在此基础上, 本文提出了基于概率的背景更新模型, 按照像素的概率来更新背景, 并利用帧间差分背景模型和KDE分类结果, 来解决背景更新中的死锁问题, 同时检测背景的突然变化. 实验证明了所提出
DriveInfoEx
- get Physical HDD serial number without WMI许多人寻找一个模式,以保护他们的工作需要得到一些信息,这是硬件的特定内容,如MAC地址或某些硬盘驱动器的序列号。 Background背景 -get Physical HDD serial number without WMI many people looking for a model in order to protect their work need to be some inform
opencvBackgroundExtraction
- 利用opencv 的 高斯模型来进行背景建模,在背景变化不大的情况下工作的不错。最好能有几帧纯粹的背景用于建模,这样效果会更好。-build the background model using Gaussian in opencv. some static background will make it works better
BackgroundSubtractionLibrary
- 基于混合高斯模型的背景消除 利用混合高斯背景建模进行运动物体检测, 同时引入共轭先验以改进权值更新方程-Gaussian mixture model based on the background to eliminate the use of Gaussian mixture background modeling for moving object detection, while the introduction of conjugate a priori weights to imp
backmodel
- EM-GMM建立背景模型,用于运动物体检测,侵入检测等-EM-GMM background model set up for moving object detection, intrusion detection, etc.
matlab_v
- Motion Tracking === === === This tarball contains all code required to run the tracking algorithm on a sequence of images. Run the file run_tracker.m in Matlab and follow the instructions. You will need to have a directory of sequentiall
gmm
- A common method for real-time segmentation of moving regions in image sequences involves “background subtraction,” or thresholding the error between an estimate of the image without moving objects and the current image. The numerous approache
Gauss
- 关于视频跟踪,高斯模型建立,背景模型更新。-With regard to video tracking, Gaussian modeling, background model update.
matlabGMM
- 用matlab编的混合高斯模型的背景建模方法,可以参考一下。-Matlab compiled using a mixed Gaussian model of background modeling method, you can reference.
MovDetect
- 基于复杂背景,单运动目标的检测,原始混合高斯模型背景更新与检测-Based on complex background, a single moving target detection, the background of the original Gaussian mixture model updated with the detection
7788
- 大名鼎鼎的方帅的博士学位论文---目前,计算机智能视频监控在理论和应用上都面临着很多难题,国内外大批学者投身于该领域的研究和探索,并且取得了大量的成果.本文是在这些成果的基础上,对计算机智能视频监控系统的关键技术进行研究.主要贡献可概括如下:首先,对目标检测技术进行了研究,并提出了一种基于背景建模的运动目标检测算法.利用统计的方法建立了基于颜色和颜色梯度的背景模型,并实时地对背景模型进行更新,最后将这两种背景模型综合考虑对目标进行了有效的检测.接着,研究了复杂背景下多目标跟踪问题,提出了基于蒙特
motion3
- 基于混合高斯模型的多目标跟踪算法,对背景图像建立混合高斯模型,实时更新高斯模型,达到更新背景的目的。-Gaussian mixture model-based multi-target tracking algorithm, Gaussian mixture model to establish the background image, real-time updates Gaussian model, to achieve the purpose of updating the backgr
Gauss-background
- 基于混合高斯背景模型的背景剪除法,可以对背景进行实时的更新实现对前景的检测-Background model based on Gaussian mixture background pruning method, the background can be updated in real time to achieve the detection of future
Background-model--program
- 基于自适应背景模型的背景建模程序,包括图像滤波,图像增强,形态学处理和连通性分析等处理-Background model based on adaptive background modeling procedures, including image filtering, image enhancement, morphological processing and connectivity analysis process
Averaging-background-Method
- 第一段代码:只建立一个背景模型,摄像头不能动。首先累加前 T 帧图像,求均值,作为背景,然后当前帧减去求的背景,即为前景。 //Averaging background Method. 第二段代码:不断更新背景,摄像头可以动。-The first piece of code: create a background model, the camera can not move. First of all, cumulative T frame averaging, as a backgrou
An-improved--background-model-
- 在移动目标检测中的,在高斯背景建模的基础上滤除阴影OpenCV-An improved adaptive background mixture model for real-time tracking with shadow detection(在高斯背景建模的基础上滤除阴影OpenCV
gauss-background-model
- 对OPENCV中高斯背景建模方法的理解,对实现函数中的关键程序进行注释,有利于读者进一步深入理解和学习-gauss background model
Gaussian-background-model
- 基于高斯背景模型的车辆检测改进算法 基于高斯背景模型的车辆检测改进算法-Gaussian background model based vehicle detection algorithm Gaussian background model based vehicle detection algorithm