当前位置:
首页 资源下载
搜索资源 - CAMshift object tracking OPENCV
搜索资源列表
-
0下载:
用opencv实现camshift算法 并且使用了 kalman算法来预测物体可能的运动轨迹 跟踪效果 一般-Achieved with opencv kalman camshift algorithm and uses algorithms to predict the trajectory of the object tracking results may be general
-
-
0下载:
基于opencv的camshift算法实现运动物体的跟踪,平台为vc6.0.加载avi格式视频,通过鼠标点击确定跟踪物体的大小和区域。-Opencv of camshift algorithm based on moving object tracking, platform vc6.0. Load avi format video, object tracking by mouse click to determine the size and area.
-
-
0下载:
用openCV实现,用Camshift算法实现彩色目标跟踪-openCV,color object tracking usingCamshift
-
-
0下载:
采用 CAMSHIFT 算法快速跟踪和检测运动目标的 C/C++ 源代码,OPENCV BETA 4.0 版本在其 SAMPLE 中给出了这个例子。算法的简单描述如下-This application demonstrates a fast, simple color tracking algorithm that can be used to track faces, hands . The CAMSHIFT algorithm is a modification of the Meanshi
-
-
0下载:
利用camshift算法openCV实现自动物体跟踪-OpenCV camshift algorithm using automatic object tracking
-
-
0下载:
camshift算法的实现,利用opencv还进行视屏跟踪,要跟踪的物体是先用鼠标确定,代码已经运行-The realization of the camshift algorithm, using opencv also tracking the screen, to follow the object is to use the mouse determined, the code is running
-
-
0下载:
基于OpenCV的智能迷宫迷宫识别CamShift算法法物体跟踪识别与串口控制信号输出,已通过测试。
-Identification and serial control signal output based on the the OpenCV smart labyrinth maze to identify CamShift algorithm method object tracking, has been tested.
-
-
0下载:
color object tracking camshift opencv
-
-
0下载:
color object tracking opencv camshift
-
-
0下载:
如果要跟踪的物体颜色和背景色有较大区别,可用基于颜色的跟踪 如CAMSHIFT 鲁棒性都是较好的。 此源码是一个opencv自带的CamShift算法使用工程实例(有非常详细的注释)。该实例的作用是跟踪摄像头中目标物体,目标物体初始位置用鼠标指出,其跟踪窗口大小和方向随着目标物体的变化而变化。-If you want to track the object color and background color is quite different, color-based tracking is
-
-
0下载:
opencv学习,camshift,能实现物体跟踪,入门学习的简单例程-opencv learning, camshift, object tracking can be achieved, started to learn the simple routines
-
-
0下载:
CamShift Opencv CamShift Opencv -CamShift Opencv CamShift Opencv CamShift OpencvCamShift Opencv
-
-
0下载:
平台VS2015+opencv3,进行Camshift视觉跟踪(By VS2015+opencv3,with camshift to object tracking)
-