当前位置:
首页
资源下载

搜索资源 - CART decision tree algorithm
搜索资源列表
-
0下载:
matlab数据挖掘算法。实用cart决策树进行分类,可识别多类。decision tree algorithm, classification.-Matlab data mining algorithms. Practical cart decision tree classification, identification number category. Decision tree algorithm, the classification.
-
-
0下载:
用matlab编写的CART数据挖掘决策树算法-using Matlab CART prepared by the Data Mining Decision Tree Algorithm
-
-
0下载:
决策树C4.5和CART算法的m源码
-CART decision tree algorithm C4.5 and the source m
-
-
1下载:
这是一个分类和回归树算法,它提供一种通用框架将各种各样不同的判定树实例化。-This is a classification and regression tree algorithm, which provides a common framework a wide variety of different decision tree instantiation.
-
-
0下载:
this decision tree ID3 algorithm, this algorithm is one of decision tree algorithm like cart, chaid, c4.5, etc-this is decision tree ID3 algorithm, this algorithm is one of decision tree algorithm like cart, chaid, c4.5, etc
-
-
1下载:
此为机器学习算法中的决策树方法之一CART,也是决策树的基本算法-This is the machine learning algorithm, one of the decision tree method CART, is the basic decision tree algorithm
-
-
0下载:
决策树算法的CART算法,用MATLAB编写,能有,不错的。-CART decision tree algorithm algorithm, using MATLAB to prepare, to have, good.
-
-
1下载:
Matlab环境下用于数据挖掘的决策树算法源代码,CART算法-Matlab environment for data mining decision tree algorithm source code, CART algorithm
-
-
0下载:
机器学习领域经典分类算法综述,包括Decision Tree(ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法),三种典型贝叶斯分类器(朴素贝叶斯算法、TAN算法、贝叶斯网络分类器),k-近邻 、 基于数据库技术的分类算法( MIND算法、GAC-RDB算法),基于关联规则(CBA:Classification Based on Association Rule)的分类(Apriori算法),支持向量机分类,基于软计算的分类方法(粗糙集(rough set)、遗传
-
-
0下载:
CART是决策树算法的一种,是数据挖掘的重要组成部分。-CART is a decision tree algorithm, is an important part of data mining.
-
-
0下载:
本程序主要实现了cart决策树分类算法,供初学者学习和使用,代码中有样例,运行代码可以得到分类结果。-The program achieved a major cart decision tree classification algorithm, for beginners to learn and use the code in the sample, run the code can be obtained classification result.
-
-
0下载:
Cart Decision tree model optimized using Genetic Algorithm and PSO
-
-
1下载:
随机森林算法的构造过程:1、通过给定的原始数据,选出其中部分数据进行决策树的构造,数据选取是”有放回“的过程,我在这里用的是CART分类回归树。
2、随机森林构造完成之后,给定一组测试数据,使得每个分类器对其结果分类进行评估,最后取评估结果的众数最为最终结果-Random Forest algorithm construction process: 1, by a given raw data, which part of the decision tree data structu
-
-
0下载:
用matlab编写的CART数据挖掘决策树算法 很好的 可以-Matlab prepared by the CART decision tree data mining algorithm is very good
-
-
0下载:
用matlab编写的CART数据挖掘决策树算法 很好的 可以-Matlab prepared by the CART decision tree data mining algorithm is very good
-
-
0下载:
用matlab编写的CART数据挖掘决策树算法 很好的 可以-Matlab prepared by the CART decision tree data mining algorithm is very good
-
-
0下载:
用matlab编写的CART数据挖掘决策树算法 很好的 可以(Matlab prepared by the CART decision tree data mining algorithm is very good)
-
-
2下载:
决策树CART算法源代码,可利用,包括make_tree和use_tree(the code of decision tree CART algorithm including make_tree and use_tree)
-
-
2下载:
给出对决策树与随机森林的认识。主要分析决策树的学习算法:信息增益和ID3、C4.5、CART树,然后给出随机森林。
决策树中,最重要的问题有3个:
1. 特征选择。即选择哪个特征作为某个节点的分类特征;
2. 特征值的选择。即选择好特征后怎么划分子树;
3. 决策树出现过拟合怎么办?
下面分别就以上问题对决策树给出解释。决策树往往是递归的选择最优特征,并根据该特征对训练数据进行分割。(The understanding of decision tree and random
-
-
1下载:
决策树算法基于python语言的具体实现实例(Implementation of decision tree algorithm based on Python language)
-