搜索资源列表
2
- 动态聚类的k均值算法--用k均值算法解决动态聚类问题
K-均值聚类算法C++编程
- K-均值聚类算法的编程实现。包括逐点聚类和批处理聚类。K-均值聚类的的时间复杂度是n*k*m,其中n为样本数,k为类别数,m为样本维数。这个时间复杂度是相当客观的。因为如果用每秒10亿次的计算机对50个样本采用穷举法分两类,寻找最优,列举一遍约66.7天,分成3类,则要约3500万年。针对算法局部最优的缺点,本人正在编制模拟退火程序进行改进。希望及早奉给大家,倾听高手教诲。-K-means clustering algorithm programming. Point by point, inc
以K-均值聚类结果为初始解的模拟退火聚类
- 由于K-均值聚类算法局部最优的特点,而模拟退火算法理论上具有全局最优的特点。因此,用模拟退火算法对聚类进行了改进。20组聚类仿真表明,平均每次对K结果值改进8次左右,效果显著。下一步工作:实际上在高温区随机生成邻域是个组合爆炸问题(见本人上载软件‘k-均值聚类算法’所述),高温跳出局部解的概率几乎为0,因此正考虑采用凸包约束进行模拟聚类,相关工作正在进行。很快将奉献给各位朋友。-as K-means clustering algorithm for optimal local character
K-均值聚类算法
- K-均值聚类算法,对数据进行聚类分析,可用于提取关键帧等。用matlab实现,K-means clustering algorithm, cluster analysis of data that can be used, such as key frame extraction. Using matlab to achieve
k-meams(sourcecode)
- C#实现k均值文本聚类算法,文本聚类C#源程序,k-means聚类算法-C# to achieve k means clustering algorithm, document clustering C# source code, k-means clustering algorithm
Kjunzhi
- K-均值聚类算法C++编程-...
kmeans
- 使用K-均值聚类算法在IRIS数据上进行聚类分析.-K-means clustering algorithm using IRIS data in the cluster analysis.
k_means_cluster
- k均值聚类算法 ,c语言实现 了基于均值的聚类分析,同时增加了多维向量分析功能,使得聚类的收敛速度更快。-k means clustering algorithm, c language implemented based on the mean cluster analysis, while increasing the multi-dimensional vector analysis functions, making the convergence faster clustering.