搜索资源列表
k-meansjava.rar
- 用JAVA语言实现的经典聚类算法k-means,聚类与分类不同,它是无监督的过程,,JAVA language used to achieve a classic clustering algorithm k-means, clustering and classification of different, it is the unsupervised process,
classificiation-algorithm-overview
- 机器学习领域经典分类算法综述,包括Decision Tree(ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法),三种典型贝叶斯分类器(朴素贝叶斯算法、TAN算法、贝叶斯网络分类器),k-近邻 、 基于数据库技术的分类算法( MIND算法、GAC-RDB算法),基于关联规则(CBA:Classification Based on Association Rule)的分类(Apriori算法),支持向量机分类,基于软计算的分类方法(粗糙集(rough set)、遗传
mechine-learning
- 本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。 全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统
MLInActionCode-master
- 机器学习实战的源代码集合,第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具(Machine learning combat source code collection