搜索资源列表
K-均值聚类算法
- K-均值聚类算法,对数据进行聚类分析,可用于提取关键帧等。用matlab实现,K-means clustering algorithm, cluster analysis of data that can be used, such as key frame extraction. Using matlab to achieve
k-means-iris
- 针对著名的UCI机器学习数据库中的iris data的kmeans聚类分析程序,具有代表性-For the well-known UCI machine learning repository of the iris data of kmeans cluster analysis procedure, a representative
k-means
- 基于K-means聚类算法的社团发现方法 先定义了网络中节点关联度,并构建了节点关联度矩阵, 在此基础上给出了一种基于 K-means聚类算法的复杂网络社团发现方法。 以最小关联度原则选取新的聚类中心, 以最大关联度原则进行模式归类,直到所有的节点都划分完为止, 最后根据模块度来确定理想的社团数-K-means clustering algorithm based on the association discovery To define a network node cor
K-means_cluster
- 这是一个基于K-means的聚类算法,可用于网页信息聚类,例如电子产品的型号聚类等。-This is based on the K-means clustering algorithm, clustering can be used for website information, such as electronic products, such as the Model Cluster.
cluster
- k均值聚类算法源码(matlab) k均值聚类算法源码(matlab)-k-means clustering algorithm source code (matlab) k-means clustering algorithm source code (matlab)
k-means
- k均值聚类算法源码 聚类算法学习的实例功能-k-means cluster algorithm
K-meansNB
- :将K—means算法引入到朴素贝叶斯分类研究中,提出一种基于K—means的朴素贝叶斯分类算法。首先用K— me.arks算法对原始数据集中的完整数据子集进行聚类,计算缺失数据子集中的每条记录与 个簇重心之间的相似度,把记 录赋给距离最近的一个簇,并用该簇相应的属性均值来填充记录的缺失值,然后用朴素贝叶斯分类算法对处理后的数据 集进行分类。实验结果表明,与朴素贝叶斯相比,基于K—means思想的朴素贝叶斯算法具有较高的分类准确率。-: K-means algorithm will
K-means
- k-means算法的实现,实用matlab是实现的,可以用啦做聚类分析-k-means algorithm for the realization of the practical realization of matlab, so you can use cluster analysis
test_kMeansCluster.m
- K mean cluster matlab code
cluster
- K means clustering of data implemented for all kinds of data-K means clustering of data implemented for all kinds of data...
k-means
- 聚类方法中的K-means实现,用matlab语言实现的聚类-Clustering of K-means implementation of the cluster with matlab language
k-means_Program
- k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 -k-means algorithm to accept input k then n-k of data objects into a cluster in order to make the cluster available to meet: t
kmeans
- 一种改进的均值聚类算法,能很好的利用与图像分割技术-k-means cluster
K-means
- 用matlab实现的聚类,效果很好,里面有部分数据,点击可以直接运行-Cluster with matlab to achieve good results, which are part of the data, click directly run
k-means
- 名为k-means的MATLAB函数,实现k均值算法。输入矩阵X,w,输出最终估计值和聚类的标识数字。-Called the k-means of the MATLAB function, to achieve k means algorithm. Input matrix X, w, the output value of the final estimates and cluster identification number.
k-means
- K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。-K-means algorithm is based on the division of the classic clustering method, is ten classic one of data mining algorithm. K-means the
K-means图像识别
- 利用K-means对图像进行聚类,识别。您可以设置参数达到更好的识别效果(Using K-means to cluster and identify images.You can set parameters to achieve better recognition results)
K-means
- K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数。(The K-means algorithm is a hard clustering algorithm, which is representative of the prototy
K-means
- K-means聚类算法的matlab实现(k-means clustering is a method of vector quantization, originally from signal processing, that is popular for cluster analysis in data mining. k-means clustering aims to partition n observations into k clusters in which each obse
k means
- k means 聚类算法,适用于供应链,物流,选址等配送中心或需求点的筛选聚类(It applies for the field of supply chain, logistics, hub location to cluster the Dcs or demand points.)