当前位置:
首页 资源下载
搜索资源 - LMS and RLS performance
搜索资源列表
-
1下载:
比较LMS,RLS, 和Kalman滤波器多用户检测器的性能-LMS comparison, RLS, and the Kalman filter multi-user detector performance
-
-
8下载:
回波抵消器中常用的几种自适应滤波算法有LMS, NLMS, RLS等算法。对现有主要算法的性能进行了分析,并对优缺点进行评价和比较。为了在收敛速度和运算量之间得到很好的折衷,对NLMS算法改进,得到了 PNLMS,Echo cancellation devices commonly used in adaptive filtering algorithm has several LMS, NLMS, RLS, such as algorithms. The main algorithm of t
-
-
1下载:
比较LMS,RLS, 和Kalman滤波器多用户检测器的性能,包括信干比性能,剩余能量输出性能。-More LMS, RLS, and Kalman filter performance multi-user detector, including the signal to interference ratio performance, the remaining energy output performance.
-
-
0下载:
本自适应LSL算法实现线性预测
以及考察LSL算法的收敛性:
与LMS、RLS算法进行性能比较
-The LSL algorithm adaptive linear prediction and to study the LSL algorithm convergence: the LMS, RLS algorithm performance comparison
-
-
0下载:
回波抵消器中常用的几种自适应滤波算法有LMS, NLMS, RLS等算法。对现有主要算法的性能进行了分析,并对优缺点进行评价和比较。为了在收敛速度和运算量之间得到很好的折衷,对NLMS算法改进,得到了 PNLMS-Echo cancellation devices commonly used in adaptive filtering algorithm has several LMS, NLMS, RLS, such as algorithms. The main algorithm of t
-
-
2下载:
利用MATLAB仿真软件对LMS和RLS两种算法进行仿真,通过仿真比较了两种算法的收敛速度,对两种算法收敛后的误码率进行分析,研究了步长对LMS算法均方误差性能曲线的影响和遗忘因子对RLS算法性能曲线的影响。-Using MATLAB simulation software for two types of LMS and RLS algorithm simulation, the simulation compares the convergence rate of two algorithm
-
-
0下载:
关于自适应滤波的算法仿真,其中应用了LMS算法和RLS算法,也比较了他们的性能-Adaptive filtering algorithms on the simulation, which applied the LMS algorithm and RLS algorithm, also compare the performance of their
-
-
0下载:
自适应滤波器算法,包括LMS算法和RLS算法,两者进行了对比,从而得到性能的比较-Adaptive filter algorithms, including LMS algorithm and RLS algorithm, the two were compared in order to be comparative performance
-
-
0下载:
拟使用基于LMS与RLS的自适应算法在MATLAB平台上对带有两个权的自适应线性组合器进行仿真,进而对两类算法的性能作比较,同时也考察了两种算法在不同参数条件下曲线收敛性的变化-Intending to use the LMS and RLS-based adaptive algorithm in the MATLAB platform with two pairs of the right to self-adaptive linear combiner is simulated, and t
-
-
0下载:
lms 算法的详细说明 (基于LMS与RLS算法的自适应均衡器性能研究)-lms detailed descr iption of the algorithm (LMS and RLS algorithm based adaptive equalizer performance of)
-
-
1下载:
两种算法(LMS和RLS)实现CDMA系统盲多用户检测的仿真。结论验证了在加性高斯白招生信道下、同步DS-CDMA系统中接收机应用这两种盲多用户检测算法抑制多址干扰(MAI: multiple access interference)和码间串扰(ISI: inter symbol interference)的能力,仿真实验与理论推导相吻合。实验与理论都表明,RLS性能好于LMS,而LMS计算量明显小于RLS。-This paper discusses two algorithms (LMS an
-
-
1下载:
分别用LMS和RLS算法实现回音对消,并比较二者收敛性能,及不同信道参数对算法的影响-LMS and RLS algorithms were used to achieve echo cancellation, and compare the convergence performance of the two, and different channel parameters affect the algorithm
-
-
1下载:
盲信号分离(BSS)指在源信号混合和传输信道未知的情况下,只利用接收天线的输出观测混合信号抽取源信号的方法。本文简要阐述了常用的瞬时混合盲信号分离的LMS与RLS自适应算法,对RLS自适应算法重点研究分析了基于普通梯度与自然梯度的两种算法,并通过仿真实验来分析比较几种方法的性能。-Blind signal separation (BSS) refers to the source signal and transmission channel mixing unknown circumstanc
-
-
0下载:
关于LMS和RLS算法的详细的原理,性能比较以及程序,附程序说明-The principle of the LMS and RLS algorithms, performance comparison and procedures, with a descr iption of the procedures
-
-
0下载:
基于RLS算法,NLMS和LMS的自适应滤波器的MATLAB程序-LMS and RLS algorithm performance comparisons, including the right value compared with the
-
-
0下载:
LMS和RLS算法的对比,及其性能分析,研究其性能曲线的变化-Comparison of LMS and RLS algorithm and its performance analysis to study changes in the performance curve
-
-
0下载:
代码实现了二阶AR模型的最优权值递推,使用了LMS和RLS两种方法,对二者性能进行了比较,分别进行了单次和100次平均进行性能观察,并且仿真了不同步长因子对LMS算法的影响以及不同lamda值对RLS算法的影响。文档包含了模型的详细介绍以及2种方法的理论仿真和结果分析。代码以附在之后。-Code to achieve the optimum weights recursive second order AR model, the use of LMS and RLS are two method
-
-
0下载:
自适应滤波算法的实现,RLS与LMS收敛性能比较代码。(Comparison of RLS and LMS convergence performance code)
-
-
1下载:
预测信号由二阶AR模型产生,为二阶线性预测滤波器,LMS算法与RLS算法性能对比(The predicted signal is generated by the two order AR model, and is the two order linear prediction filter,performance comparison between LMS algorithm and RLS algorithm)
-
-
0下载:
计算机仿真研究基于 LMS 算法和 RLS 算法的自适应系统识别性能.通过已知结构的系统来模拟未知系统是系统识别/辨识的一种基本方法.(The performance of adaptive system identification based on LMS algorithm and RLS algorithm is studied by computer simulation. It is a basic method of system identification / recognit
-