搜索资源列表
NURBS-surface
- 这是在MATLAB-2008a环境下编写的NURBS曲面生成程序,可以通过调整控制顶点和各个顶点的权重来调整曲面的形状。-This is a MATLAB-2008a environment, prepared by the NURBS surface generation program, you can adjust the control points and weights of all vertices to adjust the surface shape.
homework_da
- 初学者设计的matlab顶点问题着色问题gui解决,要求输入顶点个数,可计算色多项式,及染色方法-Matlab beginners designed gui question vertex coloring problem resolved for the importation of the number of vertices, chromatic polynomial computable, and staining
polyarea
- matlab计算任意多边形面积POLYAREA(X,Y)-POLYAREA(X,Y) returns the area of the polygon specified by the vertices in the vectors X and Y.
Triangle_view
- Matlab code to view the image of a triangle under different views given the coordinates and color of its vertices. Colors inside triangle are found by interpolation
triangulation_order6_boundary_node
- 有限元方法分析典型结构,采用六节点三角形单元-This programming give an order 6 triangulation, an abstract list of sets of six nodes. The vertices are listed clockwise, then the midside nodes.
Dijkstra-matlab
- 求第一个城市到其它城市的最短路径.用矩阵(为顶点个数)存放各边权的邻接矩阵,行向量、、、分别用来存放标号信息、标号顶点顺序、标号顶点索引、最短通路的值-The first city to find the shortest path to other cities. With a matrix (for the number of vertices) records of the right side of the adjacency matrix, row vector, were used
Dijkstra
- 图与网络论中求最短路径的Dijkstra算法 M-函数 格式 [S,D]=minroute(i,m,W) i为最短路径的起始点,m为图顶点数,W为图的带权邻接矩阵, 不构成边的两顶点之间的权用inf表示。显示结果为:S的每 一列从上到下记录了从始点到终点的最短路径所经顶点的序号; D是一行向量,记录了S中所示路径的大小 -Graph and network theory Dijkstra' s shortest path algorithm M-functio
DJshortpath
- 此MATLAB文件专门用于求某个顶点到其他顶点的最短距离-This MATLAB file dedicated to seeking the shortest distance of a vertex to other vertices
pointCloud2mesh
- 由点云数据(point cloud)生成网格(mesh)的matlab实现-Converts a pointcloud (unordered vertices) to a mesh of triangles by connecting the nearest 3 points and calculates the normal of each vertex and triangle. Also finds the neighboring triangles of each vertex and
betweenness_centrality
- 关于复杂网络中的Betweenness,用matlab计算。-betweenness_centrality(A) returns the betweenness centrality for all vertices in A.
clustering_coefficients
- 关于复杂网络的聚类系数算法,用matlab计算,矩阵为稀疏矩阵。-clustering_coefficients(A) returns the clustering coefficients for all vertices in A. The clustering coefficient is the ratio of the number of edges between a vertex s neighbors to the total possible number of edges
Hungarian_algorithm
- 这段代码使用matlab实现匈牙利算法的匹配问题-This algorithm allows you to find the minimum weight matching of a bipartite graph. The graph can be of arbitrary size and connectedness. The edge weights are captured by a MxN weight matrix where an infinite(Inf) weight desi
matlab
- FDTD的功能实现,含有中文注释,设置吸收边界和顶点-FDTD realization of the function containing Chinese notes, absorbing boundary and vertices
readstl
- matlab读取文本格式的stl文件,能够将其顶点和法向量读取出来-matlab stl file read text format that can be read out of the vertices and normals
kevin
- 包含部分obj文件 有几个在matlab环境下水印制作的小程序 有用matlab读入三维网格并显示并对读入顶点进行排序。有傅里叶变换-There are several obj file contains part in the matlab environment watermarking small program useful for three-dimensional grid matlab reads and reads and displays the sorted vertices
voronoi_MATLAB
- 此程序用来在MATLAB中创建泰森多边形,并且在产生随机中心点的同时,各中心点必须满足特定的距离关系,最后输出中心点坐标以及相应的顶点坐标,以在ABAQUS中建模。-This procedure is used in MATLAB create Thiessen polygons, and at the same time generating random center point, each center must meet specific distance relationship, t
Select_size
- 在MATLAB 环境下手动选择图像的四个顶点范围去处其他部分-Manually the four vertices of the image
MATLAB-floyd
- Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。(The Floyd algorithm, also called the Freud algorithm and the insertion point method, is an algorithm for finding the shortest path between the vertices in a given weighted graph.)
VertexsMove
- 通过随机移动规则六边形的顶点创建二维不规则多边形晶粒;并且能够统计得到晶粒粒径分布;(By randomly moving the vertices of regular hexagons, two-dimensional irregular polygonal grains are created; and the grain size distribution can be statistically obtained.)
ISP
- 独立集是指图 G 中两两互不相邻的顶点构成的集合。任意有关图中团的性质都能很自然的转述成独立集的性质。一般而言,寻找图的最大团是 NP 困难的,从而寻找图的最大独立集也是 NP 困难的。用模拟退火算法找出图的最大独立集。(Independent set is a set of vertices in graph G that are not adjacent to each other. The properties of cliques in any graph can be naturall