搜索资源列表
NSGA-II多目标规划代码(matlab版)
- 印度Deb教授开发的Non-dominating Sorting Genetic Algorithm的改进版本,非常适合parato封面逼近运算。
nsga2code-from-Deb 经典的多目标优化NSGA-II算法
- 经典的多目标优化NSGA-II算法,来自Deb教授的实验室网页,非常有用-Classical multi-objective optimization algorithm NSGA-II, from the laboratory of Professor Deb pages, very useful
nsga2_c_source.rar
- 实现遗传算法(GA)的多目标优化算法:NSGA-II算法。,The realization of genetic algorithms (GA) of the multi-objective optimization algorithm: NSGA-II algorithm.
NSGAII.rar
- 实现遗传算法(GA)的多目标优化算法:NSGA-II的MATLAB程序,The realization of genetic algorithms (GA) of the multi-objective optimization algorithm: NSGA-II of the MATLAB program
MOEA-NSGA-II.rar
- NSGA-II多目标优化的matlab代码,NSGA-II multi-objective optimization matlab code
NSGA-II
- NSGA-II源程序,用于求解多目标优化问题,是对NSGA在非支配集构造方法,维持解分布性策略等方面进行的改进。-NSGA-II source code for multi-objective optimization problem, NSGA is a non-dominated set in the constructor, maintenance solutions and other aspects of the distribution strategy of improvement
NSGA2-dynamic
- 多目标优化进化算法目前公认效果收敛性最好的算法NSGA2c++源码,具有一般性,可在此基础上继续改进,对实现其他多目标优化算法很有帮助.-Multi-objective optimization evolutionary algorithm is currently the best recognized effect of convergence of the algorithm NSGA2c++ Source, with the general, could be on this basis
MOEA-D-Continuous
- 多目标优化程序,国际顶级期刊IEEE EC 经典算法-multi-objective optimization algorithm presented in journal of IEEE trans
Standard_evolutionary_algorithm_design_and_analysi
- 为了有效检测多目标优化进化算法的性能,从3 个方面进行多目标优化测试问题的设计,即约束条件、最优解分布的均匀性、算 法逼近Pareto 最优前沿的难度,采用NSGA-Ⅱ算法对这些测试问题进行仿真实验,并将算法求得的最优解可视化。结果显示,测试问题能够有效检测算法在上述3 方面的性能。-In order to effectively detect the multi-objective optimization evolutionary algorithm performance, from
NSGA
- matlab编写的基于粒子群优化算法的多目标优化,可以处理电力系统优化问题-matlab write PSO-based multi-objective optimization, can handle the power system optimization problems
nsga-ii
- nsga-2多目标优化经典算法,有图并亲测已经跑通,供初学者学习(NSAG-2 multi-objective optimization of the classic algorithm, there are diagrams and pro test run, for beginners to learn)
多目标遗传算法matlab程序
- 多目标遗传算法,实现多目标优化,优化结束之后可用topsis方法进行选取(NSGA 2 ,After the optimization can be used topsis method to select)
NSGA-II
- 多目标优化问题,文献参考,A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization(multi-object optimization)
MA-NSGA-II-原始
- 基于多目标遗传算法的 两点路径规划求解方法。(route searching method based on Multi- objective optimization algorithm)
煤矿节能减排多目标优化研究
- 针对传统煤矿节能减排优化模型选取的目标函数比较单一的问题,构建了涵盖经济效益、能源消耗、污染物排放量等目标函数的煤矿节能减排多目标优化模型,并应用基于改进的蝙蝠算法寻找3个目标函数之间的优化解,实现了经济效益最大化、能源消耗最低化、污染物排放量最少化的优化结果。仿真结果表明,相比于PSO-E、NSGA-II算法,改进的蝙蝠算法能够在较短的迭代步数内获取较高的个体适应度,且能够实现较佳的多目标优化结果,符合节能规划的目标需求。(Aiming at the problem that the obje
NSGA-II
- matlab实现的多目标优化遗传算法代码。可输出结果并画图。(The matlab program of NSGA-II.)
NSGAⅡ
- 利用NSGAⅡ算法处理多目标优化问题,测试函数包括ZDT1,2,3; DTLZ1,2,3。包含测试函数的真实前沿面数据。(NSGA II algorithm is used to deal with multi-objective optimization problems. The test functions include ZDT1,2,3 and DTLZ1,2,3. Contains the real frontier data of the test function.)
多目标NSGA
- NSGA(非支配排序遗传算法)、NSGA-II(带精英策略的快速非支配排序遗传算法),都是基于遗传算法的多目标优化算法,是基于pareto最优解讨论的多目标优化。(NSGA (Non-dominated Sorting Genetic Algorithms) and NSGA-II (Quick Non-dominated Sorting Genetic Algorithms with Elite Strategy) are multi-objective optimization algori
遗传算法多目标优化模板
- 利用geatpy库是实现多目标优化, 基于改进NSGA-Ⅱ算法求解多目标优化问题的进化算法模板,传统NSGA-Ⅱ算法的帕累托最优解来只源于当代种群个体,这样难以高效地获取更多的帕累托最优解,同时难以把种群大小控制在合适的范围内,改进的NSGA2整体上沿用传统的NSGA-Ⅱ算法,不同的是,该算法通过维护一个全局帕累托最优集来实现帕累托前沿的搜索,故并不需要保证种群所有个体都是非支配的。(Using geatpy library to realize multi-objective optimiza
NSGA-II for Scheduling
- 利用Matla编写的NSGA-II算法,用于求解车间调度的多目标问题(The NSGA-II algorithm written by Matla is used to solve the multi-objective problem of job shop scheduling.)