搜索资源列表
psoSVM
- 利用微粒群算法(pso)优化支持向量机(SVM)的参数-c,-g-Using pso optimized support vector machine parameters-c,-g
PS0-SVR
- :针对发酵过程中生物参数难以实时在线测量的问题,建立了用于生物参数状态预估的 支持向量机软测量模型。考虑到该支持向量回归(SVR)模型的复杂性和冷化特征取决于其三 个参数 ,c, 能否取到最优值,采用粒子群优化(PSO)算法实现对参数 ,c, 的同时寻优。在 此基础上,以饲料用 .甘露聚糖酶为对象,建立了基于PSO—SVR的发酵过程产物浓度状态预估 模型。发酵罐控制结果表明:该模型具有很好的学习精度和泛化能力,可实现对 .甘露聚糖酶 产物浓度的实时在线预估。-In
FeatureSelection_MachineLearning
- Feature selection methods for machine learning algorithms such as SVR, including one filter-based method (CFS) and two wrapper-based methods (GA and PSO). The gridsearch is for the grid search for the optimal hyperparemeters of SVR. The SVM_CV is for
2016.11.03DE_SVR(差分进化)
- 以优化SVR算法的参数c和g为例,对DE(差分进化)算法MATLAB源码进行了详细中文注解。(Differential Evolution algorithm (DE) is a heuristic random search algorithm based on group differences. This algorithm is proposed by R.S and k.p. rice for solving Chebyshev polynomials. DE algorithm is
pso-svr代码
- 基于粒子群优化的向量回归预测分析 matlab代码(Support vector regression code with pso)