搜索资源列表
UCA_SMI
- QR分解SMI算法的目的正是要避免直接来解线性方程,而是将自相关矩阵分解,并利用Givens旋转实现数据矩阵的QR分解,最终将权矢量的求解问题转化为三角线性方程组的求解问题。-QR decomposition SMI algorithm, whose objective it is to avoid directly to solution of linear equations, but will auto-correlation matrix decomposition, and the u
QR
- 矩阵全部特征值的QR方法,包括化一般矩阵为上Hessenberg阵,平面旋转阵(Givens变换阵),用 Givens变换对上Hessenberg阵作QR分解,原点平移加速的QR方法等-Eigenvalue matrix of all the QR methods, including the general of the Hessenberg matrix array, planar array rotation (Givens transformation matrix), with the