搜索资源列表
solution-of-Differential-equation-group
- 提供了4种解常微分方程组的c++代码:定步长四阶龙格-库塔(Runge-Kutta)法(RK4->RKDUMP); 自适应变步长的龙格-库塔(Runge-Kutta)法(RKQC->ODEINT); 改进的中点法(MMID); 外推法(BSSTEP(RZEXTR(有理函数), PZEXTR(多项式));-provide four kinds of solutions of ordinary differential equations c code : There will be f
Ordinary-Differential-Equations
- 求解常微分方程组,用了四种方法,分别是:先前欧拉、向后欧拉、改进欧拉、RK4方法。-Solution of ordinary differential equations, using the four methods are: the previous Euler, Backward Euler, Improved Euler, RK4 method.
RK4
- 数值分析中,显式4阶龙格-库塔法(Runge-Kutta)是用于求常微分方程数值解的重要迭代法。本算法优点是可以求高阶常微分方程(或多变量微分方程组)的数值解,并且可缩减求解时间-Runge-Kutta method
CSharp-RK4
- 使用C#来进行常微分方程组的解算,具有很高的参考价值-Using c# to calculation of ordinary differential equations, which has very high reference value
rk4
- 4阶龙格库塔方法求解常微分方程组,并作出吸引子图像-4-order Runge-Kutta method for solving ordinary differential equations, and make attractor image
GRKT2
- 用变步长四阶龙格—库塔(RK4)法对一阶微分方程组积分一步-Fourth order with variable step Runge- Kutta (RK4) method to the first-order differential equations integral step
RK4-FOR-N
- 用四阶龙格库塔法来求含有N阶导数的微分方程组的解,需要自己输入改动的数值-Using the fourth-order Runge-Kutta method to find the solution of differential equations with N-th derivative, we need to input the numerical value
writn
- 提供了4种解常微分方程组的c++代码:定步长四阶龙格-库塔(Runge-Kutta)法(RK4->RKDUMP);()
VYYNY
- 提供了4种解常微分方程组的c++代码:定步长四阶龙格-库塔(Runge-Kutta)法(RK4->RKDUMP);()
change_step_RK4
- 常微分方程组的四阶RungeKutta龙格库塔法matlab实现,仅供参考。(Matlab implementation of the four order RungeKutta Runge Kutta method for ordinary differential equations)