搜索资源列表
Hilbert_Sierpinski
- 著名的Hilber 曲线和Sierpinski曲线,JAVA实现.体现递归算法和JAVA中的绘图功能.-famous Hilber curve and Sierpinski curves, JAVA. recursive algorithm embodied in Java and graphics functions.
graphics.rar
- 分形树、Sierpinski垫片C程序、Mandlbrot集图形、Koch曲线C程序,Tree fractal, Sierpinski gasket C procedures, Mandlbrot graphics set, Koch curve C program
iphoneSierpinski
- iphone上的Sierpinski分形, 用来学习IPHONE OBJECTIVE C编程, 如UIImageViews-The Sierpinski triangle, also called the Sierpinski gasket or the Sierpinski Sieve, is a fractal named after Sierpinski who described it in 1915. Originally constructed as a curve, this is
deidai
- WXH-斐波那契数列.Koch曲线 动态的Von Koch分形曲线,中点法生成Sierpinski地毯 分形蝴蝶 -WXH-Fibonacci sequence. Koch curve dynamic Von Koch fractal curve, the mid-point method to generate fractal Sierpinski carpet Butterfly
06_04_LS_Fractal
- 介绍各种形体的表示以及数据结构,实现包括Koch曲线和Koch雪花,Sierpinski地毯,L-S分形树的编程实现。-Introduced a variety of physical representation and data structure, to achieve, including Koch and Koch snowflake curve, Sierpinski carpet, LS Fractal Programming tree.
fractal
- 学习和研究分形理论的相关算法,然后通过编程实现这些算法,从而对分形学友一些基本了解,对于日后的学习会有不小帮助。 实验采用L系统程序设计实现koch雪花曲线;用迭代函数系统程序设计实现Sierpinski曲线的生成。 内附有代码和解释 -Fractal theory study and research related algorithms, and then programming these algorithms, thus some basic understanding of
KaSaC
- Koch曲线、Sierpinski三角形、Cantor集的MATLAB实现代码 含结果图-Koch curve, Sierpinski triangle, Cantor set of MATLAB implementation code contains the results of Figure
fractal-use
- 分形的练习一 ①Koch曲线 用复数的方法来迭代Koch曲线 clear i 防止i被重新赋值 A=[0 1] 初始A是连接(0,0)与(1,0)的线段 t=exp(i*pi/3) n=2 n是迭代次数 for j=0:n A=A/3 a=ones(1,2*4^j) A=[A (t*A+a/3) (A/t+(1/2+sqrt(3)/6*i)*a) A+2/3*a] end plot(real(A),imag(A)) axis([0 1 -
fractal-algorithm-_-base
- 内含Cantor三分集,Koch曲线,Koch雪花源Arboresent,Sierpinski垫片,Hilbert—Peano曲线,Hilbert—Peano曲线等源代码 -Contains Cantor ternary set, Koch curve, the Koch snowflake source Arboresent, the Sierpinski gasket, Hilbert-Peano curve, Hilbert-Peano curve source code
code
- 1.实验目的:绘制分形图案并分析其特点。 2.实验内容:绘制Koch曲线、Sierpinski三角形和树木花草图形,观察这些图形的局部和原来分形图形的关系。 3.实验思路:利用函数反复调用自己来模拟分形构造时的迭代过程,当迭代指标n为0时运行作图操作,否则继续迭代-1. Purpose: Draw fractal patterns and analyze their characteristics. 2. Experiment: Draw Koch curve,
code
- 1.实验目的:绘制分形图案并分析其特点。 2.实验内容:绘制Koch曲线、Sierpinski三角形和树木花草图形,观察这些图形的局部和原来分形图形的关系。 3.实验思路:利用函数反复调用自己来模拟分形构造时的迭代过程,当迭代指标n为0时运行作图操作,否则继续迭代-1. Purpose: Draw fractal patterns and analyze their characteristics. 2. Experiment: Draw Koch curve,
Estimation-of-Fractal-Dimensions
- 利用MATLAB 的图像处理和数值计算功能,对大气可吸入颗粒物的场发射电镜 (FESEM)图像进行处理,得到颗粒物边界的二值图像;编制MATLAB程序,统计一系列以不同 像素数量为边长的正方形块覆盖二值图像时的个数,根据像素数量和正方形块个数之间的关系, 确定图像的计盒维数。结果表明:MATLAB对分形图像的处理简单、方便,通过科赫曲线、谢宾 斯基填料等有规分形图形分形维数的计算表明该方法计算出的结果准确、可靠。对大气颗粒物的 分形维数的计算表明,不同不规则程度的颗粒物有不同
serpinski_triangle
- The Sierpinski triangle (also with the original orthography Sierpiński), also called the Sierpinski gasket or the Sierpinski Sieve, is a fractal and attractive fixed set with the overall shape of an equilateral triangle, subdivided recursively into s
sierpinski
- 分形结构的基础,sierpinski曲线。体现了图形形成的迭代,调整结束可以看到图形形成过程(The basis of fractal structure, Sierpinski curve. It reflects the iteration of graphics formation. The process of graphics formation can be seen at the end of adjustment.)