搜索资源列表
cluster-2.9
- ClustanGraphics聚类分析工具。提供了11种聚类算法。 Single Linkage (or Minimum Method, Nearest Neighbor) Complete Linkage (or Maximum Method, Furthest Neighbor) Average Linkage (UPGMA) Weighted Average Linkage (WPGMA) Mean Proximity Centroid (UPGMC)
aaaa
- 基于生物免疫系统的自适应学习、免疫记忆、抗体多样性及动态平衡维持等功能,提出一种动态多目标免疫 优化算法处理动态多目标优化问题.算法设计中,依据自适应ζ邻域及抗体所处位置设计抗体的亲和力,基于Pa- reto控制的概念,利用分层选择确定参与进化的抗体,经由克隆扩张及自适应高斯变异,提高群体的平均亲和力,利 用免疫记忆、动态维持和Average linkage聚类方法,设计环境识别规则和记忆池,借助3种不同类型的动态多目标 测试问题,通过与出众的动态环境优化算法比较,数值实验表明所
waynezhanghk-gactoolbox-53508ce
- Gactoolbox 工具箱,针对图的图聚类工具,克服一般聚类方法不能应用于图的缺点-Gactoolbox is a summary of our research of agglomerative clustering on a graph. Agglomerative clustering, which iteratively merges small clusters, is commonly used for clustering because it is conceptually s
plot_classifier_comparison
- 基于Pythoon的数值聚类分类算法,基于Python的三维立体点的空间最近邻分类(This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is simply the graph of 20 nearest neighbors. Two consequences of imposing a connectivity can b
Clustering
- 1) 使用凝聚型层次聚类算法(即最小生成树算法)对所有数据点进行聚类,最后聚成3类。相异度定义方法可选择single linkage、complete linkage、average linkage或者average group linkage中任意一种。 2) 使用C-Means算法对所有数据点进行聚类。C=3。 任务2(必做): 使用高斯混合模型(GMM)聚类算法对所有数据点进行聚类。C=3。并请给出得到的混合模型参数(包括比例??、均值??和协方差Σ)。 任务3(全做): 1) 参考数据文