搜索资源列表
burger
- 这个是burger方程,李群的方法,求生成元-This is a burger equations, Lie group methods, and generator
inviscid_eqution
- 求解粘性Burger方程和非粘性Burger方程的各种差分格式,包括BTCS格式的显式计算 BTCS格式的隐式计算 滞后非线性项 向前时间步长线性化 牛顿迭代法线性化 Lax-Wendroff格式 通量分裂格式显试计算 通量分裂格式隐式计算 CN格式隐式计算 等格式。-Solution of viscous Burger equation and non-viscous Burger differential equations of various for
BURGERS.F
- A Fortran Code for solving the Burger s Equation of Gas Dynamics.
Burger
- 求解偏微分方程领域的经典方程Burger方程:u(t)+uu(x)=eu(xx)-Solving partial differential equations of classical field equations Burger equation: u (t)+ uu (x) = eu (xx)
Burguers_avec_diffusion
- The Finite Volume Burger Equation
fortran-files
- 文件1.f90:生成翼型naca0012的椭圆网格,并计算流场,给出壁面压力分布 文件2.f90:maccormack方法解一维burger s方程 文件3.f90:解一维laval管流动,其进出口均为亚音速,喉道后部有激波-File 1.f90: generate the airfoil naca0012 elliptical rotary cell, and calculate the flow field, given the wall pressure distributio
WENO5_1DB
- 使用5阶WENO格式,3阶RK格式,LF通量分裂,对一维Burger s方程进行求解。所得结果可以与《Weighted Essentially Non-Oscillatory Schemes》1994中结果进行对比-Using five order WENO scheme, the third-order RK format, LF flux splitting of one-dimensional Burger' s equation is solved. The results can
hw_3.tar
- Solver for 1-D Burger s equation using Lax-Wendroff scheme.
Burgers_equation
- Burger Equation with Riemann Solver in 2D case
weno.tar
- 5阶weno格式解burger equation(含精度计算及绘图,打开文件夹WENO.pdf有详细说明。./test.sh运行程序)-5th order weno scheme solve burger equation (include calculating order and draw , open document WENO.pdf contains detailed instructions./test.sh run program)
laxwendroff.tar
- lax-wendroff 格式解burger equation,含绘图和精度计算!./test.sh运行程序-lax-wendroff scheme solve burger eqution ,contains draw picture and calculate order!./test.sh run program
eno.tar
- eno格式解burger equation,运行程序后输入网格(如80)和终止时间(0到1.5之间)-eno scheme solve burger equation,runing program then input 80 and 1 get results.
burger.c
- viscous Burgers equation solver
3rd-FVM.f90
- 3rd order Finite volume for Burger s equation
inviscid_burger_equ_final.zip
- This solver is 1-D burger equation solver intended for solving singe/double shock prob and further double shock problem for purpose of coursework of Computational Fluid Dynamics. The code was made at the LINUX platform. Let me know if you need assist