当前位置:
首页 资源下载
搜索资源 - color image clustering matlab
搜索资源列表
-
2下载:
利用matlab实现彩色图像的分割。算法主要是利用聚类算法。-using Matlab color image segmentation. This algorithm is to use clustering algorithm.
-
-
1下载:
较全的mean shift算法合集,有基于mean shift算法的图像平滑处理,图像分割,图像聚类,Than the entire collection of the mean shift algorithm, the mean shift algorithm based on image smoothing, image segmentation, image clustering
-
-
0下载:
这是我们的数字图像处理的大作业,用模糊聚类的方法做的图像分割,希望对大家有用,谢谢!-This is our large digital image processing operations, with the fuzzy clustering method to do image segmentation, hope for all of us, thank you!
-
-
3下载:
本程序首先把图像由RGB空间转到HSI空间,然后利用彩色图像分割策略以及meanshift算法对图像进行分割最后加入边界合成。其中‘keyprogram.m’文件为主程序,‘meanshift.m’文件为调用函数,实现数据的聚类分割。-The program first the image from the RGB space to HSI space and then using color image segmentation strategy and meanshift image seg
-
-
0下载:
一种图像分割算法—像素聚类区域成长法
此法从一个种子像素开始,通过如平均灰度、组织纹理及色彩等性质的判断,将具类似性质的像素纳入所考虑区域。-An image segmentation algorithm- clustering pixels regional growth law this method started from a seed pixel, through, such as average gray, organizations such as texture and co
-
-
1下载:
基于matlab的彩色图像分割,利用k聚类算法-Matlab-based color image segmentation, clustering algorithm using k
-
-
2下载:
图像颜色聚类分割,实现了图形分割,基于RGB特征并显示出来。-Color image segmentation clustering, to achieve the graphics division, based on the characteristics of RGB and displayed.
-
-
0下载:
this a code to segment the color texture using Gabor filter. It uses the initial segmentation using kmeans clustering.-this is a code to segment the color texture using Gabor filter. It uses the initial segmentation using kmeans clustering.
-
-
1下载:
将K均值算法用于图像分割,输入的是彩色图像,转换为灰度图像进行分割,输出结果为灰度图像.利用灰度做为特征对每个像素进行聚类,由于光照等原因,有时应该属于一个物体的像素,其灰度值也会有很大的差别,可能导致对该像素的聚类发生错误.在分割结果中,该物体表面会出现一些不同于其它像素的噪声点,因此,算法的最后,对结果进行一次中值滤波,以消除噪声,达到平滑图像的作用-The K means algorithm for image segmentation, the input is a color imag
-
-
0下载:
In this project ,we propose a color based segmentation method that uses the c means clustering technique to track tumor objects in magnetic resonance (MR) brain images. The key concept in this color based segmentation algorithm with k means means to
-
-
2下载:
彩色图像分割,灰常不错。This function implements kmeans clustering on an input RGB (m x n x 3)
image. The user inputs at least two inputs: IMGIN and NCLUSTERS, and this
function will step through an interactive color segmentation using kmeans clustering. It
-
-
3下载:
该代码能够实现K均值聚类算法对彩色图像分割,在MATLAB下实现。-The code can achieve K means clustering algorithm to color image segmentation, in MATLAB to achieve.
-
-
0下载:
matlab 彩色图像处理,是采用Kmean聚类法做出的。处理的效果还行-atlab color image processing, clustering method is used Kmean made. Treatment results were line
-
-
0下载:
candy边缘检测,彩色图像的边缘检测,K均值聚类,sobel边缘检测(C)其他是matlab程序-candy edge detection, color image edge detection, K-means clustering, sobel edge detection (C) the other is a matlab program
-
-
1下载:
利用matlab实现彩色图像的分割。算法主要是利用聚类算法-Use of matlab color image segmentation. Algorithm is the main clustering algorithm
-
-
0下载:
comparehist是用于检测两个图像的直方图巴士距离,xuefu是通过C类均值算法对图像进行颜色聚类,ccv是提取衣服图像的颜色一致向量,便于以后对图像各个特征值进行操作-comparehist is used to detect the two image histogram bus distance, xuefu Class C means algorithm for image color clustering, ccv extract clothes image consistent
-
-
0下载:
基于matlab的模糊均值C的聚类程序,可以实现彩色图像的聚类,能实现程序时间统计-Matlab-based fuzzy mean C clustering procedures, can achieve color image clustering, to achieve the program time statistics
-
-
0下载:
Clustering is a way to separate groups of objects. K-means clustering treats each object as having a location in space. It finds partitions such that objects within each cluster are as close to each other as possible, and as far from objects in other
-
-
1下载:
Color Reduction and Quantization using k-Means, Fuzzy Clustering (FCM), and SOM Neuarl Network in MATLAB
In this post, we are going to share with you, the MATLAB implementation of Color Quantization and Color Reduction of images, using intelligent c
-
-
1下载:
该课题为基于kmeans的聚类分割,输入一张彩色图像,可以选择需要分割成多少类,就会以不同颜色区分不同的块,带有GUI界面,操作丰富。(This topic is based on Clustering Segmentation of kmeans. Input a color image, you can choose how many categories you need to segment, and then different blocks will be distinguished
-