搜索资源列表
Bigintmutiply
- 大整数乘法的分治法源码,在JDK1.51中运行-large integer multiplication of the divide-and-conquer method source code, to run in JDK1.51
large_integer
- VC++ 分治法大整数乘法-VC++ divide and conquer large integer multiplication
Demo
- 用netbeans写的swing程序,写了非递归求两整数最大公因子、分治法求大整数乘法、动态规划求最长公共子串,集合划分问题。 -Netbeans swing with written procedures, write a non recursive find the greatest common factor of two integers, divide and conquer seek large integer multiplication, dynamic programming
bignumber
- 分治法实现的大整数乘法。是学习分治算法策略的很好的范例。-Sub-rule method to achieve the large-integer multiplication. Is a good example of learning the strategy of divide and conquer algorithm.
TarsusPmultiplication
- 分治法大整数乘法课件 概述:算法概要、算法效率 合并排序 快速排序 折半查找 大整数乘法 Strassen 矩阵乘法 分治法解凸包 -Divide and conquer integer multiplication courseware about the function and some problems very effective way to solve the that serious .I think it will be ok!
test1
- 分治法实现大整数乘法,其实应该用数组来保存大整数的,再考虑如何去完善这个程序。但分治算法的核心思想已经尽在其中了。-Divide and conquer method for large integer multiplication
big
- 大整数乘法,编译通过,采用的是分治法,绝对正确-Large integer multiplication, compiled by the divide and conquer, absolutely right.
gaijin-fenzhifa
- 此为对分治法大整数相乘的一个改进,能够给对刚开始学习算法的人一个了解的机会-This is an improved large integer multiplication of divide-and-conquer method to the beginning of the learning algorithm an understanding of the opportunity
IntegerMultiply
- 算法分析与设计 用递归分治算法解决大整数乘积问题(java源码)-Algorithm Analysis and Design Recursive divide and conquer algorithm to solve the problem of large integer multiplication. (Java source code)
bigNumMult
- 计算1万位以上的大整数乘法,有蛮力法和分治法-Calculation 10,000 more than the large integer multiplication with brute force method and the divide and conquer
bigIntMuilt
- 分治法求大整数乘法 只能支持256位乘法而已,不过已经完整实现了分治法,而且可以支持有符号的数-Divide and conquer method for large integer multiplication multiply it can only support 256, but has been completely realized divide and conquer, and can support a number of symbols
divide-and--conquer
- 实现大整数相乘,时间复杂度n(logn),c++源码-Achieve a large integer multiplication, time complexity n (logn), c++ source