CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 资源下载 搜索资源 - dropout;神经网络

搜索资源列表

  1. DropOut深度网络

    1下载:
  2. 深度神经网络在测试时面对如此大的网络是很难克服过拟合问题的。 Dropout能够很好地解决这个问题。通过阻止特征检测器的共同作用来提高神经网络的性能。这种方法的关键步骤在于训练时随机丢失网络的节点单元包括与之连接的网络权值。在训练的时候,Dropout方法可以使得网络变得更为简单紧凑。在测试阶段,通过Dropout训练得到的网络能够更准确地预测网络的输出。这种方式有效的减少了网络的过拟合问题,并且比其他正则化的方法有了更明显的提升。 本文通过一个简单的实验来比较使用Dropout方法前后网络
  3. 所属分类:其他

    • 发布日期:2018-04-28
    • 文件大小:304kb
    • 提供者:转角的狐狸
  1. dropout_and_minibatch

    0下载:
  2. 基于两层BP神经网络,加入dropout和softmax,输出层使用softmax,实现对手写字符库MNIST的识别,正确率达90%。(Based on the two level BP neural network, adding dropout and softmax, the output layer uses softmax to realize the recognition of handwritten character library MNIST, the accuracy ra
  3. 所属分类:其他

    • 发布日期:2018-05-01
    • 文件大小:16.8mb
    • 提供者:WG_JNU
搜珍网 www.dssz.com