搜索资源列表
EM算法
- EM算法,用于实现高斯混合模型参数估计GMM
EM.zip
- EM算法简明教程 用于高斯分布隐马尔可夫模型的参数估计,Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models
EmEstimate
- 给定独立同分布样本集,用matlab编程实现EM算法进行参数估计-Given the independent and identically distributed sample set, using matlab programming EM algorithm to estimate parameters
EM
- EM算法Matlab实现。最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)-EM algorithm by Matlab. Maximum expected (EM) algorithm is probabilistic (probabilistic) model to find maximum likelihood parameter estimation or m
em
- em算法是一种估计最优参数的方法 又名最大期望算法-em algorithm is a way to estimate the optimal parameters, also known as the greatest expectations algorithm
emgmm
- 本程序是EM算法,是参数估计(极大似然估计)方法的数值解法。-This procedure is the EM algorithm, is the parameter estimation (MLE) method of numerical solution.
em
- 混合高斯概率密度模型,其参数估计可以通过期望最大化( EM) 迭代算法获得。-EM estimation parameters Gaussian mixture processes
EM.java.tar
- EM 算法是 Dempster,Laind,Rubin 于 1977 年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行 MLE 估计,是一种非常简单实用的学习算法。这种方法可以广泛地应用于处理缺损数据,截尾数据,带有讨厌数据等所谓的不完全数据(incomplete data)。需要weka的算法包支持。-EM algorithm is Dempster, Laind, Rubin in 1977 for the parameters proposed by maximum
ros-em
- em算法运用于有散射体的信道模型下实现参数估计(los距离)-em algorithm applied to a scattering channel model to achieve parameter estimation (los distance)
em-three-preference
- 基于EM算法,可以估计在混合高斯分布下的三个参数-EM expection
EM
- 利用Matlab编程验证用EM算法估计的高斯混合模型的相关参数的性能。-Validate the use of Matlab programming estimated using EM algorithm for Gaussian mixture model parameters related to the performance.
EM
- 求解参数估计的常用算法——EM,即期望最大化算法,用于代替样本量不完全时的极大似然估计算法。-Common algorithm for solving parameter estimation- EM, expectation maximization algorithm is used to replace the sample size is not completely at the maximum likelihood estimation algorithm.
EM-Algorithm
- 参数估计 EM算法 的c语言实现在linux下编译通过-Parameter estimation of EM algorithm realize the C language in the Linux under the compiler through
em(1)
- EM算法实现高斯混合模型参数估计的matlab程序,可以下载学习。-EM algorithm to achieve the matlab program Gaussian mixture model parameter estimation, you can download the study.
EM-suanfa-hunhegaosi
- em算法计算混合高斯模型的参数估计,极大似然,EM算法用于K均值问题的参数估计。MATLAB实现有代码-em algorithm Gaussian mixture model parameter estimation, maximum likelihood parameter estimation for K-means problem EM algorithm. MATLAB implementation code
EM-java
- Em算法是一个参数估计算法,是一个重要的迭代优化算法-Em algorithm is a parameter estimation algorithm, is an important iterative optimization algorithm
EM-algorithm
- 主要介绍了EM算法(最大期望算法),该方法用于参数估计,相较于MLE算法更为简单。-em algorithm
EM算法
- 在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。(In statistical calculation, the expectation maximization (EM) algorithm in probability (probabilistic) maximu
R
- R语言对数据进行Garch-M-Copula建模并利用EM算法估计相应的参数(Garch-m-copula is used to model the data in R language and EM algorithm is used to estimate the corresponding parameters)
EM算法用于高斯混合模型
- EM算法在高斯混合模型的参数估计中的应用,内服Matlab程序例子。(Application of Matlab program and EM algorithm in parameter estimation of Gaussian mixture model.)