当前位置:
首页 资源下载
搜索资源 - face recognition P
搜索资源列表
-
0下载:
基于形态学商图像的光照归一化算法.复杂光照条件下的人脸/P,~J1是一个困难但需迫切解决的问题,为此提出了一种有效的光照归一化算法.
该方法根据面部光照特点,基于数学形态学和商图像技术对各种光照条件下的人脸图像进行归一化处理,并且将它
发展到动态地估计光照强度,进一步增强消除光照和保留特征的效果.与传统的技术相比,该方法无须训练数据集以
及假定光源位置,并且每人只需一幅注册图像,在耶鲁人脸图像库B上的测试表明,该算法以较小的计算代价取得了
优良的识别性能.-Face recogn
-
-
1下载:
基于OpenCV的人脸识别演示程序。目前实现了Gabor+Fisherface算法,还有几何和光照归一化。
-->请到 http://code.google.com/p/facerecog/ 下载最新版本。<--
功能:对摄像头拍摄的或用户指定的图像,检测其中人脸,然后在已存储的人脸库中找到最匹配的人脸并显示。
在VS 2008 SP1上编写,使用了OpenCV 2.0和MFC,通过消息处理函数与用户进行交互,利用多线程来实时显示图像。
数据处理分为了C
-
-
0下载:
PCA人脸识别
MATLAB程序
有测试文件-PCA Face Recognition MATLAB program has test file
-
-
0下载:
TI最新的davinci处理器介绍及datasheet,包括应用的领域,最新支持人脸识别技术.-TI introduced the latest and davinci processor datasheet, application areas, including the latest technology to support face recognition.
-
-
0下载:
Library of Congress Cataloging-in-Publication Data
Handbook of face recognition / editors, Stan Z. Li & Anil K. Jain.
p. cm.
Includes bibliographical references and index.-Library of Congress Cataloging-in-Publication Data
Handbook of face re
-
-
0下载:
三维人脸识别的经典文章,是三维人脸表情识别论文争相引用的经典文章-Using Biologically Inspired Features for Face Processing
In this paper, we show that a new set of visual
features, derived from a feed-forward model of the primate
visual object recognition pathway proposed by R
-
-
0下载:
在图像处理特别是人脸识别中经常用到PCA算法,这是基于Opencv的PCA算法。-In the image processing in particular are often used in PCA face recognition algorithm, which is based on the Opencv the PCA algorithm.
-
-
0下载:
Performs Procustes point alignment on a group of point sets. Method rigidly aligns, shifts, and scales points to reduce mean square error.
Method is described in:
B. Klare, P Mallapragada, A.K. Jain, and K. Davis, "Clustering Face Carvings: E
-
-
0下载:
The 3-D Morphable Model was
introduced as a generative model to p redictthe appearances o f
an individual while using a statistical prior on shape and
texture allowin g its parameters to be estimated from single
image. Based on these new unde
-
-
0下载:
用市面上的摄像头,可以实现实时人脸识别功能。(The algorithm model of facenet face recognition is obtained through deep learning, and the backbone network of feature extraction is concept-resnetv1, which is developed from concept network and RESNET, with more channels and n
-