搜索资源列表
camerads.rar
- opencv摄像头实时人脸识别,支持各种摄像头,Real-time face recognition opencv camera, supports a variety of camera
faceRecognitionBasedOnWavelet
- 基于小波变换和神经网络的人脸识别:本论文围绕人脸识别问题对人脸特征提取及识别技术进行了研究。主要有:对人脸识别的研究工作进行了综述;在KL算法的基础上提出了新的基于KL的特征提取方法,克服了KL算法计算量大,计算时间长的缺点,-Based on Wavelet Transform and Neural Network Face Recognition: In this paper, issues surrounding the face recognition feature extractio
MoAT7.1
- This paper identifies a novel feature space to address the problem of human face recognition from still images. This based on the PCA space of the features extracted by a new multiresolution analysis tool called Fast Discrete Curvelet Transfo
pcalda
- 首先进行小波变换,在此基础上进行pca特征提取,在进行lda特征提取,用于人脸识别-First, wavelet transform, in this based on pca feature extraction, feature extraction during lda for face recognition
wavepp
- 利用小波进行一级特征提取,在此基础上采用2dpca进行二级特征提取,用于人脸识别。-Carried out a wavelet feature extraction, in this based on the use of 2dpca for two feature extraction for face recognition.
jiyutezhengronghehemohuhepanbian
- 提出了基于特征融合和模糊核判别分析(FKDA)的面部表情识别方法。首先,从每幅人脸图像中手工定 位34个基准点,作为面部表情图像的几何特征,同时采用Gabor小波变换方法对每幅表情图像进行变换,并提取基 准点处的Gabor小波系数值作为表情图像的Gabor特征;其次,利用典型相关分析技术对几何特征和Gabor特征进 行特征融合,作为表情识别的输人特征;然后,利用模糊核判别分析方法进一步提取表情的鉴别特征;最后,采用最 近邻分类器完成表情的分类识别。通过在JAFFE国际表情数据库和
Bfaccerecongna
- 一种基于弹性模板匹配的人脸表情识别程序源码。首先针对静态表情图像进行表情图像的灰度、尺寸归一化,然后后运用Gabor小波变换提取人脸表情特征以构造表情弹性图,最后提出一种基于弹性模板匹配及K 可直接使用。 -Facial expression recognition based on elastic template matching program source code. First the face image of the gray-scale images for static e
xiaobotiqurenliangtuxiantezhen
- 基于matlab小波分析人脸识别的特征提取-Extraction based on wavelet analysis matlab face recognition feature
Wavelet-Recognition-matlab
- 基于Yale-B和CMU-PIE 人脸库上的实验结果显示本文算法对复杂光照具有较强鲁棒性,具备提取复杂光照条件下人脸图像有效特征的能力。小波变换 特征提取 matlab仿真-Experimental results based on Yale-B and CMU-PIE face show that the proposed algorithm has a strong light on the complexity of robustness, with the extraction of
lingnan-V7.3
- Gabor小波变换与PCA的人脸识别代码,基于负熵最大的独立分量分析,用于特征降维,特征融合,相关分析等。- Gabor wavelet transform and PCA face recognition code, Based on negative entropy largest independent component analysis, For feature reduction, feature fusion, correlation analysis.