搜索资源列表
matlab-signal
- 用c语言实现下列的数字信号处理算法 1.离散傅里叶级数合成连续周期信号 2.DIF FFT 测试程序 3.将输入数据的幅度画出图形 4.使用FFT实现快速卷积 5.使用FFT实现快速相关 6.取样混迭演示程序 -language used to achieve the following digital signal processing algorithms 1. Discrete Fourier series synthetic signal two conse
Experiment-for-FFT-convolution-using-Overlap-Add-m
- 采用FFT和IFFT的快速卷积的C程序实现源代码。-FFT and IFFT fast convolution C program source code.
ligl-fft
- 基于tms320vc55*系列DSP常用算法,包括: 1. Experiment 7A - Radix-2 Complex FFT in C 2. Experiment 7B - Radix-2 Complex FFT in C55x Assembly Language 3. Experiment 7C - Radix-2 Complex FFT and IFFT 4. Experiment 7C - Fast Convolution 5. matla
Converg
- 快速卷积算法实现,使用MFC实现界面,适合数字信号处理的初学者。-fast convolution algorithm, using MFC interface, digital signal processing for beginners.
matlabPyrTools
- This package contains some MatLab tools for multi-scale image processing. Briefly, the tools include: - Recursive multi-scale image decompositions (pyramids), including Laplacian pyramids, QMFs, Wavelets, and steerable pyramids. These oper
Graphics4
- 图形算法合集4:快速线性插值、半色调技术、使用lookup查找表的快速卷积、Nurbs曲面三角化等等。-Graphical Collection 4: rapid linear interpolation, halftoning techniques, the use of look-up table lookup fast convolution, Nurbs surface triangulation and so on.
fft
- 本文件包含三个小程序,分别为用fft实现功率谱估计、实现快速卷积和快速相关。对了解fft在c中的编程很有帮助-This document contains three procedures were used to achieve power spectrum estimation fft, fast convolution and fast correlation. Fft to know programming in c in the helpful
ksjj
- 编写一个MATLAB函数,实现快速卷积算法,给出一个实例。用一个N点离散傅立叶变换同时计算两个N点实序列的离散傅立叶变换。-The preparation of a MATLAB function, fast convolution algorithm, given a case in point. With a N-point discrete Fourier transform at the same time calculation of the two N-point real sequ
Fast_conv
- Fast algorithm for convolution of two discrete signals in Matlab
q719
- q717是验证时域采样与频域采样的对偶性,q718是快速卷积运算-q717 is to verify the time domain sampling and frequency-domain sampling of the duality, q718 is fast convolution
shiftsequence
- 开发circonvt函数来计算序列的圆周移位 编写一个matlab函数,实现快速卷积算法-Development circonvt function to calculate the circumference of the shift sequence write a matlab function, fast convolution algorithm
2
- 边缘特征的提取就是求图像梯度的局部最大值和方向。实际计算中,以微分算子的形式表示,并采用快速卷积函数来实现。常用的算子有微分算子,拉普拉斯算子,Canny算子等。其中Canny边缘检测是一种较新的边缘检测算子,具有较好的边缘检测性能,得到越来越广泛的应用。Canny边缘检测法利用高斯函数的一阶微分,它能在噪声抑制和边缘检测之间取得较好的平衡-Edge feature extraction is to seek the local maximum of image gradient and ori
C
- 通信工程类各种信号处理C语言仿真集。其中包括常用信号的产生、快速傅里叶变换、快速离散正交变换、快速卷积与相关、数字滤波器的时域与频域相应、IIR数字滤波器的设计、FIR数字滤波器的设计、经典谱估计、现代谱估计等等。-Communication engineering various signal processing C language simulation set. Including the commonly used signal generation, FFT, fast discre
vc-fast-convolution-code
- 本程序的主要内容是实现了数字信号处理的快速卷积算法。经过证明,此算法较其他的算法有相当的优势。-The main content of this program is to achieve a fast convolution algorithm for digital signal processing. Proven, this algorithm has a considerable advantage over other algorithms.
C
- 《数字信号处理C语言程序集》 内涵各种c语言源码! 第一章 数字信号的产生 均匀分布随机数;正态分布随机数;指数分布随机数.... 第二章 快速傅里叶变换 第三章 快速离散正交变换 第四章 快速卷积与相关 第五章 数字滤波器的时域和频域响应 -" Digital Signal Processing C language program set the connotation of a variety of c language source code!
Fast-2-D-convolution
- 图像处理中经常用到卷积运算,它并不能等同于普通的二维矩阵的卷积运算,为了解决边界效应,通常都要采取一些优化手段。请仔细阅读代码,必有收获。- Y = CONVOLVE2(X, M, SHAPE) where SHAPE is a string returns a subsection of the 2-D convolution with size specified by SHAPE
digital-signal-C-code
- 数字信号C语言程序集,FFT、快速卷积、IIR数字滤波、图像旋转、增强、边缘检测、人工神经网络算法-Digital signal C assembly language, FFT, fast convolution, IIR digital filtering, image rotation, enhancement, edge detection, artificial neural network algorithm
fft
- 数字信号处理 FFT变换的应用 快速卷积 ,高斯序列 三角序列 反三角序列-The FFT transform digital signal processing applications fast convolution Gaussian sequence triangle sequence anti-triangular sequence
3_1FC
- 数字信号处理中关于快速卷积计算处理的相关示例程序-Digital Signal Processing for fast convolution calculation process related sample program
LAB4
- 探索卷积的不同的实现方法,而非用matlab中的卷积命令(explore how this can be calculated efficiently using the FFT. This entails understanding the difference between linear and circular convolution. We will explore using the FFT and compare it with a conventional direct im