CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 资源下载 搜索资源 - feature selection pca

搜索资源列表

  1. Object-Recognition-via-Sparse-PCA 利用稀疏主分量分析实现目标识别中的特征提取

    0下载:
  2. 利用稀疏主分量分析实现目标识别中的特征提取,包括论文和仿真代码。-Informative Feature Selection for Object Recognition via Sparse PCA
  3. 所属分类:编程文档

    • 发布日期:2017-04-09
    • 文件大小:1.48mb
    • 提供者:吴均
  1. eigenvalue_computation.tar

    1下载:
  2. 快速PCA计算方法,有效实现降维等操作,和特征选择-Fast PCA method of calculation of effective dimension reduction and other operations, and feature selection
  3. 所属分类:Graph program

    • 发布日期:2016-12-28
    • 文件大小:1.16kb
    • 提供者:anan
  1. pca

    0下载:
  2. 该代码为PCA主成分分析,可用于特征选择,选取贡献最大的前三个主成分-The code for the PCA principal component analysis, can be used for feature selection, select the largest contribution to the first three principal components
  3. 所属分类:matlab

    • 发布日期:2017-04-04
    • 文件大小:1.6kb
    • 提供者:vivi
  1. progarmlab4

    0下载:
  2. The Principal component analysis, is a standard technique used for data reduction in statistical pattern recognition and signal processing A common problem in statistical pattern recognition is feature selection or feature extraction. Feature selec
  3. 所属分类:Other Databases

    • 发布日期:2017-04-02
    • 文件大小:13.22kb
    • 提供者:binu
  1. kernelpca_tutorial

    1下载:
  2. Kernel pca基于核方法的特征提取算法-feature selection
  3. 所属分类:matlab

    • 发布日期:2017-03-31
    • 文件大小:2.17kb
    • 提供者:xiangqiyan
  1. PCA-(2)

    0下载:
  2. 用pca方法提取特征脸,可调参数,每次选择20张脸,或者分行显示-Face feature extraction using pca methods, adjustable parameters, 20 face each selection, or branches show
  3. 所属分类:Special Effects

    • 发布日期:2017-04-03
    • 文件大小:3.95kb
    • 提供者:翟磊
  1. face-recognition

    0下载:
  2. 用于人脸识别的LDA和PCA特征提取方法的Matlab代码,结合两个程序可以实现PCA+LDA特征提取方法。-LDA and PCA is a common methods of feature selection,These are their source code using matlab.
  3. 所属分类:matlab

    • 发布日期:2017-03-29
    • 文件大小:1.1kb
    • 提供者:qibe
  1. Face-recognition--on-a-DSP

    0下载:
  2. 本文介绍了 DSP6711的硬件特性 分析了人脸检测、 识别的原理及算法的选型 运用基于 DCT变换域的 LDA的特征提取方法 ,实现了人脸的自动识别。在 Yale人脸库上的实验结果表明本算法识别率要比直接用 PCA进行特征提取的方 法要好-This article describes the DSP6711 hardware features analysis of face detection, recognition of the principle and algorithm se
  3. 所属分类:Special Effects

    • 发布日期:2017-03-28
    • 文件大小:332.26kb
    • 提供者:louc
  1. PCA-and-MatlabCode

    0下载:
  2. 主成分分析法实现特征选择,里面有非常详细的算法介绍,还有一个现实实例介绍,非常具象,里面贴有实现算法的matlab代码-Principal component analysis (PCA)to achieve feature selection , which has a very detailed descr iption of algorithms , there is a real example to illustrate , very concrete , which is affix
  3. 所属分类:AI-NN-PR

    • 发布日期:2017-04-02
    • 文件大小:68.91kb
    • 提供者:gaoxiaojian
  1. pcaica

    0下载:
  2. pca与ica相结合的特征选择,进行主成分分析以后,再对所得特征进行独立成分分析-the combination of pca and ica for feature selection,after Principal component analysis, the resulting characteristics is has a independent component analysis
  3. 所属分类:Other systems

    • 发布日期:2017-11-15
    • 文件大小:136.34kb
    • 提供者:阿里
  1. Desktop

    0下载:
  2. 特徵粹取(feature extraction)是特徵選取(feature selection)的延伸,簡單地說,我們希望將資料群由高維度的空間中投影到低維度的空間,因此,我們必須找出一組基底向量(base)來進行線性座標轉換,使得轉換後的座標,能夠符合某一些特性。 我們可以將特徵粹取分成「包含類別資訊」和「不包含類別資訊」兩大類。包含類別資訊指的是我們已經知道哪些資料分別歸屬於哪一類;而不包含類別資訊的特徵粹取則適用於我們不知道手上的資料點分別該歸屬於哪一類,甚至連該劃分成幾類都不
  3. 所属分类:matlab

    • 发布日期:2017-04-13
    • 文件大小:1.81kb
    • 提供者:林家
  1. pca-feature-sel

    0下载:
  2. tHIS FILE DESCRIBES THE FEATURE SELECTION TECHNIQUE FOR MAMMOGRAM FEATURES
  3. 所属分类:software engineering

    • 发布日期:2017-05-07
    • 文件大小:1.09mb
    • 提供者:karthikeyan
  1. Attribute profiles

    0下载:
  2. 选择合适的样本特征点,然后可以将特征导入svm进行分类(After the image processing, the main information is obtained by PCA transform, and then the feature of texture information selection is put forward)
  3. 所属分类:图形图像处理

    • 发布日期:2017-12-31
    • 文件大小:33.43mb
    • 提供者:三千世界
  1. 降维code

    1下载:
  2. 了解降维、特征筛选等基本原理 掌握PCA、SVD、LAD和NMF等算法实现及应用(Understand the basic principles of dimensionality reduction and feature selection Master the algorithm implementation and application of PCA, SVD, lad and NMF)
  3. 所属分类:数据挖掘

    • 发布日期:2020-11-02
    • 文件大小:850kb
    • 提供者:宋楠楠123
搜珍网 www.dssz.com