当前位置:
首页 资源下载
搜索资源 - find matching to block
搜索资源列表
-
1下载:
超分辨率复原(分块处理)
将样本库中的高分辨率图象和低分辨率图象分别做分块处理,当新输入一幅低分辨率图象时,分成小块到样本库中寻找最匹配的高分辨率块,然后复原出高分辨率图象。-Superresolution recovery (block processing) for a sample of high-resolution images and low-resolution images respectively block , when the new importation of a
-
-
1下载:
超分辨率复原(分成1024块)
将样本库中的高分辨率图象和低分辨率图象分别做分块处理,当新输入一幅低分辨率图象时,分成小块到样本库中寻找最匹配的高分辨率块,然后复原出高分辨率图象。-Superresolution recovery (into 1024) for a sample of high-resolution images and low-resolution images, respectively do block, when the new importation of a l
-
-
1下载:
实现了序列图像的柱面全景图拼接,采用的块匹配法,顺序进行块匹配功能,找到最佳匹配位置,进行线性融合法进行拼接。-Achieved a series of cylindrical panoramic image stitching, using a block matching method, in order to block-matching function to find the best match position, a linear fusion splicing method.
-
-
0下载:
The source code is the best neighboring matching method, which will find out a best 16x16 macro block to conceal the lost macor block. this code is written by Matlab.
-
-
0下载:
Block matching algorithm,find the most similarity block in the neighborhood. Block matching algorithm,find the most similarity block in the neighborhood.-Block matching algorithm,find the most similarity block in the neighborhood.Block matching algor
-
-
0下载:
基于边缘梯度的图像匹配,实现对寻找块图像的精确寻找-Gradient based edge image matching, to achieve the exact image of the search block to find
-
-
0下载:
基于opencv,直方图匹配,找到目标图像与模板图像直方图匹配的区域并标出坐标,方法为反向块搜索-Based on opencv, histogram matching, to find the target image and the template image histogram matching and mark the coordinates of the area, the method of reverse block search
-
-
1下载:
1. 提取目标区域的初始边界
2. 重复以下步骤
?? 1)判断是否还存在待填充区域,如果不存在,则退出
?? 2)计算每一个边缘像素点块的优先级
?? 3)选出最大优先级点,基于该点查找最佳匹配块
?? 4)将最佳匹配块的值复制到对应的目标区域
?? 5)更新目标区域的边界与置信度值(1. Extracting the initial boundary of the target region
2. Repeat the following steps
1) Deter
-
-
1下载:
全搜索算法重构图。像顾名思义,穷尽法就是对搜索范围内的每个位置都进行计算并比较,从原图像块中找到与待匹配块最相似(误差最小)位置的方法。对于一个搜索范围为[-7,7]的区域来说,x,y两个方向全部搜索一遍需要进行 15X15 = 225 次计算。穷尽法的缺点很明显就是计算量太大,速度很慢,另一方面,由于全部范围都进行了计算,其匹配精度是最高的。(Reconstruction graph of full search algorithm. As the name implies, the exha
-