搜索资源列表
fuzzy
- The neuro-fuzzy software for identification and data analysis has been implemented in the MATLAB language ver. 4.2. The software trains a fuzzy architecture, inspired to Takagi-Sugeno approach, on the basis of a training set of N (single) outpu
chap4
- 水箱液位模糊控制仿真和sugeno模糊控制仿真程序-Tank level fuzzy control method and fuzzy control simulation program sugeno
3_9
- 使用模糊控制来实现单级倒立摆的控制仿真。使用了sugeno 模型来完成-The use of fuzzy control to achieve a single-stage inverted pendulum control simulation. Sugeno model used to complete the
Tripleinvertedpendulumweightedfuzzyneuralnetworkco
- 为了提高三级倒立摆系统控制的响应速度和稳定性,在设计Mamdani 型模糊推理规则控制器控制倒立摆系统稳定的基础上, 设计了一种更有效率的基于Sugeno 型模糊推理规则的模糊神经网络控制器。该控制器使用BP 神经网络和最小二乘法的混 合算法进行参数训练,能够准确归纳输入输出量的模糊隶属度函数和模糊逻辑规则。通过与Mamdani 型控制器的仿真对比, 表明该Sugeno 型模糊神经网络控制器对三级倒立摆系统的控制具有良好的稳定性和快速性,以及较高的控制精度。-In order to
mohu
- 高木关野模糊系统(将高木关野模糊系统应用到BP神经网络中)-Takagi Sugeno fuzzy system (to Takagi Sugeno fuzzy system applied to the BP neural network)
lm_ts
- For training Takagi-Sugeno fuzzy systems using the Levenberg-Marquardt method
113060057
- this is a fuzzy logic based on sugeno methods program
mohukongzhi
- 本人模糊控制的课堂作业,基于Sugeno(TSK)推理的模糊控制器-I am working class of fuzzy control, based on Sugeno (TSK) inference of the fuzzy controller
Sugeno-TSK
- 本人的模糊控制课堂作业,基于Sugeno(TSK)推理的模糊控制器-Fuzzy control of my class assignments, based on Sugeno (TSK) inference of the fuzzy controller
invertedpendulum
- 在倒立摆摆角及摆速很小的时候,实现基于sugeno模型的倒立摆模糊控制-Monotonously in inverted pendulum angle and velocity very young to realize sugeno Model Based Fuzzy Control of Inverted Pendulum
sugenotune
- Sugeno-type FIS output tuning
chap4_9
- Sugeno模糊模型的倒立摆控制单链路 -Sugeno fuzzy model of the single-link inverted pendulum control
user
- C++ codes for takagi-Sugeno fuzzy controller
Takagi-Sugeno-FuzzyModelingforProcessControl
- 2:Takagi-Sugeno fuzzy modeling 2.1 Construction of Fuzzy Models 2.1.1 Sector Nonlinearity 2.2 Basic Fuzzy Mathematics for Modeling 2.2.1 Local Approximation in Fuzzy Partition Spaces-2:Takagi-Sugeno fuzzy modeling 2.1 Construction
Takagi-Sugeno-fuzzymodel
- The fuzzy inference process discussed so far is Mamdani s fuzzy inference method, the most common methodology. This section discusses the so-called Sugeno, or Takagi-Sugeno-Kang, method of fuzzy inference. Introduced in 1985, it is similar to the Mam
yasukawa
- Sugeno Yasukawa fuzzy modeling controller with predefined sinusoidal function
takag_sugeno
- Takagi sugeno fuzzy modelling conroller with predefined sinusoidal function
Zeft-Lung-Cancer
- zeft lung cancer is fuzzy system example which determine zeft lung cancer risk with smoking habits .. we use sugeno model for defuzzification
boilier identification using Takagi Sugeno
- This paper describes the application of an identification algorithm clustering type Gustafson-Kessel nonlinear dynamical system. From input-output data the algorithm generates fuzzy models of Takagi-Sugeno. This type of modeling is applied to a non
sugeno
- souce code for matlab wich used sugeno algoritm