搜索资源列表
基于Gabor特征提取和人工智能的人脸检测系统源代码
- 使用步骤: 1. 拷贝所有文件到MATLAB工作目录下(确认已经安装了图像处理工具箱和人工智能工具箱) 2. 找到"main.m"文件 3. 命令行中运行它 4. 点击"Train Network",等待程序训练好样本 5. 点击"Test on Photos",选择一个.jpg图片,识别。 6. 等待程序检测出人脸区域
基于Gabor特征提取和人工智能的人脸检测系统源代码
- Version : 5.0 (New Version) 1- copy all files and directories to the MATLAB's work folder * In order to run the program you must have Image Processing and Neural Networks Toolboxes 2- find the file named "main.m" 3- Double click
gabor
- Gabor filter with 2 files, creategabor is the function agreeing with the gabor function, gabor is an sample for implementing and visualizing the gabor filter by 5*8 images
Gabor_signal
- 人脸表情识别的Gabor小波变换,最终得到5个尺度,8个方向的不同特征,此程序参考文件Gabor feature classification using enhanced FLD model facial recognition-Facial Expression Recognition of Gabor wavelet transform, finally be five scale, eight directions of different characteristics, this p
codes
- The File Contains 5 Other Source Codes include, bandpass Butterworth Filter, Gabor Bank, RGB to HLS Conversion, Image Filtering in Frequency Domain and Hough transform. I hope that s enough to make me a member. Regards. Zizi.
matlab-work
- f=zeros(30,30) f(5:24,13:17)=1 imshow(f, notruesize ) F=fft2(f,256,256) F2=fftshift(F) figure,imshow(log(abs(F2)),[-1 5], notruesize ) -f=zeros(30,30) f(5:24,13:17)=1 imshow(f, notruesize ) F=fft2(f,256,256) F2=fftshift
fdp5finalMatlab.tar
- 这是一个使用了Gabor特征提取和人工智能的人脸检测系统源代码 使用步骤: 1. 拷贝所有文件到MATLAB工作目录下(确认已经安装了图像处理工具箱和人工智能工具箱) 2. 找到"main.m"文件 3. 命令行中运行它 4. 点击"Train Network",等待程序训练好样本 5. 点击"Test on Photos",选择一个.jpg图片,识别。 6. 等待程序检测出人脸区域 createffnn.m, d
Gabor-Matlab
- MATLAB实现gabor滤波器,程序默认为5个尺度,8个方向。-MATLAB realization gabor filter, the program defaults to 5 scale, eight directions.
Gabor-Matlab
- Gabor滤波 默认5个尺度,8个方向 每次卷积后将结果拉成一维向量,再将每次卷积结果串起来。 -Gabor filter default 5 scale, eight directions of each convolution result will be pulled into one-dimensional vector, and then each convolution results to string together.
Gabor-feature
- Gabor特征提取 包括8个方向以及5种不同尺度 可用于人脸特征提取-Gabor feature extraction, including eight directions and 5 different scales can be used for facial feature extraction
matlab-Gabor
- 输入: 选择要进行gabor滤波的图片路径,默认图片格式为:.bmp. 输出: 默认是5个尺度,8个方向。所以共有40次卷积结果。 每次卷积后将结果拉成一维向量,再将每次卷积结果串起来。-Input: Select the Gabor filter to the picture path, the default picture format is:.Bmp. Output: The default is 5 dimensions, 8 directions. So
qengbei_V1.5
- 能量熵的计算,BP神经网络用于函数拟合与模式识别,Gabor小波变换与PCA的人脸识别代码。- Energy entropy calculation, BP neural network function fitting and pattern recognition, Gabor wavelet transform and PCA face recognition code.
siegie_V5.5
- matlab实现了五类灰色关联度模型的计算,Gabor小波变换与PCA的人脸识别代码,cordic算法的matlab仿真。- matlab implements five gray correlation degree computing model, Gabor wavelet transform and PCA face recognition code, cordic matlab simulation algorithm.
puikan-V1.5
- Gabor小波变换与PCA的人脸识别代码,光纤无线通信系统中传输性能的研究,表示出两帧图像间各个像素点的相对情况。- Gabor wavelet transform and PCA face recognition code, Fiber Transmission wireless communication system performance, Between two images showing the relative circumstances of each pixel.
fai-V3.5
- 毕设内容,高光谱图像基本处理,ofdm系统仿真 含16qam调制 fft 加窗 加cp等模块,Gabor小波变换与PCA的人脸识别代码。- Complete set content, basic hyperspectral image processing, ofdm system simulation including 16qam modulation fft windowing modules plus cp, Gabor wavelet transform and PCA face re
beijei-V5.5
- It contains positional PID algorithm, integral separate PID, There are good reference value, Gabor wavelet transform and PCA face recognition code.
hough,gabor,Radon,headata,wdcbm2()
- 1.从图像中识别几何形状的基本方法;基本原理是在于利用点与线的对偶性,将原始图像空间给定的曲线通过曲线表达形式变为参数空间的一个点,这样就把原始图像中给定的检测问题转化为寻找参数空间的峰值问题。 2.基于Gabor变换的人眼检测MATLAB实现。 3.基于Radon的车牌矫正方法。 4.基于模型函数headata产生不同大小的头模型数据。 5.基于函数wdcbm2()设置图像分层阈值压缩参数,实现图像压缩(The basic method of identifying geometry
GABOR 小波代码
- 用于人脸识别边缘检测,实现5个尺度、8个方向的检测。(Edge detection for face recognition)
fan-V4.5
- By matlab code, Using weighted model nodes in the network strength and weight are power law distribution, Gabor wavelet transform and PCA face recognition code.
Gabor Matlab
- 用于提取5个尺度,8个方向的Gabor 特征(It is very useful to extract the Gabor features)