当前位置:
首页 资源下载
搜索资源 - gaussian elimination m
搜索资源列表
-
0下载:
* 高斯列主元素消去法求解矩阵方程AX=B,其中A是N*N的矩阵,B是N*M矩阵
* 输入: n----方阵A的行数
* a----矩阵A
* m----矩阵B的列数
* b----矩阵B
* 输出: det----矩阵A的行列式值
* a----A消元后的上三角矩阵
* b----矩阵方程的解X
-out the main elements of Gaussian elimination method for solving matrix equ
-
-
0下载:
This a Fibonacci Sequence Generator. I am 15 and this took some thinking. The code is obviously not refined. It does the job.
Fibonacci顺序发生器
使用高斯消除法解n阶方程
-This a Fibonacci Sequence Generator. I a m 15 and this took some thinking. The code is
-
-
2下载:
数值线性代数的Matlab应用程序包
共13个程序函数,每个程序函数有相应的例子函数一一对应,以*Example.m命名
程序名称 用途 Method 方法
GrmSch.m QR因子分解 classical Gram-Schmidt orthogonalization 格拉母-斯密特
MGrmSch.m QR因子分解 modified Gram-Schmidt iteration 修正格拉母-斯密特
householder.m QR因子分
-
-
0下载:
高斯列主元素消去法求解矩阵方程AX=B,其中A是N*N的矩阵,B是N*M矩阵
-Out the main elements in Gaussian elimination method for solving the matrix equation AX = B, in which A is N* N matrix, B is N* M matrix
-
-
0下载:
用列选主元高斯消去法求解右端具有M组常数向量的N阶一般带型方程组AX=D.其中A为N阶带型矩阵.-PCA with out Gaussian elimination selection method with the M group of the right side of the N-order vector constants with the general equation AX = D. One A for the N-order band-type matrix.
-
-
0下载:
a routine for Gaussian elimination together w/ gepivot.m which you will need for running
-
-
0下载:
一个不错的全主元高斯消去法并行算法的MPI源程序-a MPI source code for Gaussian elimination s parallel algorithm
-
-
0下载:
Gaussian elimination routine, single RHS, (needs gepivot.m)
-
-
0下载:
用列选主元高斯消去求解右端具有m组常数向量的n阶带型方程组AX=D-With column pivoting Gaussian elimination to solve right end of the constant vector with m groups with n-order equations AX = D
-
-
0下载:
Method Gaussian Elimination with pivoting for Linear Systems
-
-
0下载:
3.1 线性方程组类设计
3.2 全选主元高斯消去法
3.3 全选主元高斯-约当消去法
3.4 复系数方程组的全选主元高斯消去法
3.5 复系数方程组的全选主元高斯-约当消去法
3.6 求解三对角线方程组的追赶法
3.7 一般带型方程组的求解
3.8 求解对称方程组的分解法
3.9 求解对称正定方程组的平方根法
3.10 求解大型稀疏方程组的全选主元高斯-约当消去法
3.11 求解托伯利兹方程组的列文逊方法
3.12 高斯-赛德尔
-
-
0下载:
Method Gaussian Elimination with pivoting for Linear System
-
-
0下载:
Method Gaussian Elimination without pivoting for Linear Systems
Solve Ax = b using Gaussian elimination without pivoting
Inputs : A is the n-by-n coefficient matrix
b is the n-by-k right hand side matrix
Outputs : x is the n-by-k
-
-
0下载:
Method with Gaussian Elimination without Pivoting
LU factorization of matrix A using Gaussian-elimination without pivoting
Inputs : A --> n x n matrix
Outputs : L (lower triangular) && U (upper triangular)
- Method with Gaussi
-
-
0下载:
Method with Gaussian Elimination with Pivoting
function [L,U,P] = lu_pivot(A)
- Method with Gaussian Elimination with Pivoting
function [L,U,P] = lu_pivot(A)
-
-
0下载:
高斯消去列主元法求解方程组,另创建一个M文件写入系数矩阵等即可验证-Out Gaussian elimination method for solving equations, the main element, and the other to create a file to write the coefficient matrix M can be verified, etc.
-
-
0下载:
全选主元高斯-约当消去法同时求解系数矩阵相同而右端具有m组常数向量的线性代数方程组AX=B的全部解-QuanXuan primary gaussian-about when elimination technique and then the coefficient matrix is the same and the right side of the constant vector with m linear algebra equations AX = B of all solutions
-
-
1下载:
数值分析例题,包括欧拉法、龙格-库塔法、牛顿拉夫逊算法、牛顿-斯柯特和高斯消元法-Gaussian Elimination Row Operations
Newton Raphson
Newton-Cotes integration
Euler s method
Runga-Kutta
gaussjordan
-
-
0下载:
LDPC码的高斯消去编码基于MATLAB的M函数编程-LDPC codes Gaussian elimination coding based on MATLAB M-function programming
-
-
0下载:
线性方程组的解法
全主元高斯-约当(Gauss-Jordan)消去法
用高斯-约当消去法求解A[XY]=[BI],其中A为n*n非奇异矩阵,B为n*m矩阵,均已知;X(n*m),Y(n*n)未知。-Solution of linear equations the main yuan Gaussian- Jordan (Gauss-Jordan) elimination method Gauss- Jordan elimination method to solve A [XY] = [B
-