搜索资源列表
surf tracking
- Most motion-based tracking algorithms assume that objects undergo rigid motion, which is most likely disobeyed in real world. In this paper, we present a novel motion-based tracking framework which makes no such assumptions. Object is represented by
hmm
- Runs an HMM as a generative model generating N output vectors
2dgaussian
- 汽车高斯曲面拟合 --- 2程序,以适应到表面二维高斯: 子= A *的进出口( -((西为X0)^2/2/sigmax^2 +(艺Y0的)^2/2/sigmay^ 2)。。)+ b的 这些例程是自动在某种意义上说,他们并不需要出发对模型参数的猜测规范。 autoGaussianSurfML(十一,彝,子)适合通过对模型参数的最大似然(最小二乘)。它首先计算了该模型在许多可能的参数值,然后选择最佳质量设置和细化与lsqcurvefit它。 auto
MotionTrackingPOM.pdf
- Given two to four synchronized video streams taken at eye level and from different angles, we show that we can effectively combine a generative model with dynamic programming to accurately follow up to six individuals across thousands of frames i
ITU-R_IMT-A_channel-model
- 一本非常好的关于ITU解说的书籍,通过它可以了解ITU信道的生成原理。-A very good about ITU explain books, by which it can understand the ITU channel generative principle.
3-D-Models-Pose-and-Illumination
- The 3-D Morphable Model was introduced as a generative model to p redictthe appearances o f an individual while using a statistical prior on shape and texture allowin g its parameters to be estimated from single image. Based on these new unde
Multi-Class-Video-Co-Segmentation
- 这是一篇关于多个物体类的协同分割应用到视频分割的论文。-Multi-Class Video Co-Segmentation with a Generative Multi-Video Model ;2013 IEEE Conference on Computer Vision and Pattern Recognition
lda-c
- LDA是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。文档到主题服从Dirichlet分布,主题到词服从多项式分布。 LDA是一种非监督机器学习技术,可以用来识别大规模文档集(document collection)或语料库(corpus)中潜藏的主题信息。它采用了词袋(bag of words)的方法,这种方法将每一篇文档视为一个词频向量,从而将文本信息转化为了易于建模的数字信息。但是词袋方法没有考虑词与词之间的顺序,这简化了问题的复杂性,同时也为
JRMPC_v0.9.2
- A Generative Model for the Joint Registration of Multiple Point Sets
daSVM-master
- Matlab implementation of the EM and MCMC algorithm for SVMs as introduced in the paper Data augmentation for support vector machines http://ba.stat.cmu.edu/journal/2011/vol06/issue01/polson.pdf-This is a Matlab implementation of the fancy idea by Pol
Speech Processing Analysis - MATLAB
- The number of states in GMM as the generative model of the frames is obtained using k-means algorithm. This also helps to initialize the mean vector and the covariance matrix of the individual state of the GMM. The training LPC frames collected fro
IDCT_Tracker14
- 代码适用于追踪物体,可以很有效的图中进行精确的实时追踪(This code impelemts a method for tracking an object in a sequence of images given its location in the first frame. In this approach, a combination of generative and discriminative methods is used to model the object appear
adversarial.tar
- 此程序为对抗生成网络,生成图像。 生成对抗网络是一种生成模型(Generative Model),其背后基本思想是从训练库里获取很多训练样本,从而学习这些训练案例生成的概率分布。 而实现的方法,是让两个网络相互竞争,‘玩一个游戏’。其中一个叫做生成器网络( Generator Network),它不断捕捉训练库里真实图片的概率分布,将输入的随机噪声(Random Noise)转变成新的样本(也就是假数据)。另一个叫做判别器网络(Discriminator Network),它可以同时观察真实和假
lesson51-WGAN实战
- 生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。(Emergent against network (GAN, Generative Adversarial Networks) is a kind of deep learni